

Lecture 17 | Part 1

Today's Lecture

Massive Sets

You've collected 1 billion tweets.¹

Goal: given the text of a new tweet, is it already in the data set?

¹This is about two days of activity.

Membership Queries

- We want to perform a membership query on a collection of strings.
- Hash tables support Θ(1) membership queries.
- Idea: so let's use a hash table (Python: set).

Problem: Memory

- How much memory would a set of 1 billion strings require?
- Assume average string has 100 ASCII characters.

(8 bits per char)×(100 chars)×1 billion = 100 gigabytes

That's way too large to fit in memory!

Today's Lecture

- Goal: fast membership queries on massive data sets.
- Today's answer: Bloom filters.

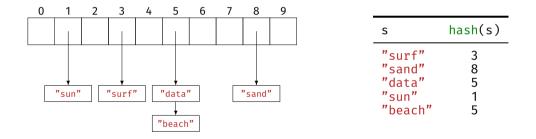
Lecture 17 | Part 2

Bit Arrays

The Challenge

- We want to perform membership queries on a massive collection (too large to fit in memory).
- We want to remember which elements are in the collection...
- ...without actually storing all of the elements.
- From hash tables to Bloom filters in 3 steps.

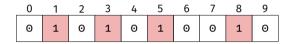
First Stop: Hash Tables



Memory Usage

- Problem: we're storing all of the elements.
- Why? To resolve collisions.
- **Fix**: ignore collisions.

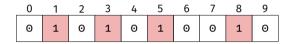
Second Stop: Hashing Into Bit Arrays



S	hash(s)
"surf"	3
"sand"	8
"data"	5
"sun"	1
"beach"	5

- Use a bit array arr of size c.
- Insertion: Set arr[hash(x)] = 1.
- Query: Check if arr[hash(x)] = 1.

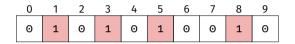
Second Stop: Hashing Into Bit Arrays



S	hash(s)
"surf"	3
"sand"	8
"data"	5
"sun"	1
"beach"	5

- Use a bit array arr of size c.
- Insertion: Set
 arr[hash(x)] = 1.
- Query: Check if arr[hash(x)] = 1.
- Can be wrong!

False Positives



S	hash(s)
"surf"	3
"sand"	8
"data"	5
"sun"	1
"beach"	5

- Query can return false positives.
- e.g., hash("ucsd") == 3
- Cannot return false negatives.

Memory Usage

- Requires c bits, where c is size of the bit array.
- False positive rate depends on c.
 c is small → more collisions → more errors
 c is large → fewer collisions → fewer errors
- **Tradeoff**: get more accuracy at cost of memory.

- What is the probability of a false positive?
- Suppose there are c buckets, and we've inserted n elements so far.
- We query an object x that we haven't seen before.
- False positive \Leftrightarrow arr[hash(x)] == 1.

Assume hash assigns bucket uniformly at random.

▶ If $x \neq y$ then, $\mathbb{P}(hash(x) = hash(y)) = 1/c$

- Prob. that first element does not collide with x: 1 - 1/c.
- Prob. that first two do not collide: $(1 1/c)^2$.
- Prob. that all n elements do not collide: (1 – 1/c)ⁿ.

- ▶ Hint: for large *z*, $(1 1/z)^z \approx \frac{1}{e}$
- So the probability of no collision is:

$$(1 - 1/c)^n = [(1 - 1/c)^c]^{n/c} \approx e^{-n/c}$$

- This is the probability of no false positive.
- Probability of false positive upon querying x: $\approx 1 - e^{-n/c}$

- For fixed query, probability of false positive: $\approx 1 - e^{-n/c}$.
 - n: number of elements stored
 - c: size of array (number of bits)
- Randomness is over choice of hash function.
 Once hash function is fixed, the result is always the same.

Fixing False Positive Rate

- Suppose we'll tolerate false positive rate of ε .
- Assume that we'll store around n elements.
- ▶ We can choose *c*:

$$1 - e^{-n/c} = \varepsilon \implies c = -\frac{n}{\ln(1 - \varepsilon)}$$

Example

- Suppose we want \leq 1% error.
- Previous slide says our bit array needs to be 100 times larger than number of elements stored.²
- Memory when n = 10⁹: 1 billion bits ×100 = 12.5 GB.
- Can we do better?

²We could have guessed this, huh?

Lecture 17 | Part 3

Bloom Filters

Wasted Space

Suppose we want \leq 1% error.

- Our bit array needs to be 100 times larger than number of elements stored.
- That's a lot of wasted space!

Third Stop: Multiple Hashing

Idea: use several smaller bit arrays, each with own hash function.

Third Stop: Multiple Hashing

_ (0	1	2	3	4	5	6	7	8	9
G	Э	1	Θ	1	Θ	1	Θ	Θ	1	0
(0	1	2	3	4	5	6	7	8	9
G	Э	Θ	Θ	Θ	1	ο	1	1	Θ	1
	s hash_1(s) hash_2(s))			
	,	'sur	f"	3				7		
	,	'san	d"		8			7		

5

1

5

4

9

6

"data"

"sun"

"beach"

- Use k bit arrays of size c, each with own independent hash function.
- Insertion: Set
 arr_1[hash_1(x)] = 1,
 arr_2[hash_2(x)] = 1,
 ...,

arr_k[hash_k(x)] = 1.

Third Stop: Multiple Hashing

0	1	2	3	4	5	6	7	8	9
Θ	1	Θ	1	Θ	1	Θ	Θ	1	Θ
0	1	2	3	4	5	6	7	8	9
Θ	Θ	Θ	Θ	1	Θ	1	1	Θ	1
_									
5	5		ha	ch /	(-)	h-	h	- (-)	
			Πά	511	L(S)	Πc	asn_	2(5,)
,	'sur	f"	na	31-	L(S)	110	<u>asn_</u> 7	2(5))
	'sur 'san						7 7	2(5))
,		d"	114	3			7 7 4)
,	'san	d" a"		3 8			7)

- Use k bit arrays of size c, each with own independent hash function.
 - Query: Return True if all of arr_1[hash_1(x)] = 1, arr_2[hash_2(x)] = 1,

..., arr_k[hash_k(x)] = 1.

Example: hash_1("hello") == 3, hash_2("hello") == 2

Exercise

What effect does increasing *k* have on false positive rate?

Intuition

- False positive occurs only if false positive in all tables.
- ► This is pretty unlikely.
- If false positive rate in one table is small (but not tiny), probability false positive in all tables is still tiny.

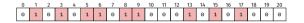
More Formally

- Probability of false positive in first table: $\approx 1 - e^{-n/c}$.
- Probability of false positive in all k tables: $\approx (1 - e^{-n/c})^k$.
- Example: if c = 4n and k = 3, error rate is $\approx 1\%$.
- Uses only 12 × n bits, as opposed to 100 × n from before.

Last Stop: Bloom Filters

- How many different bit arrays do we use? (What is k?)
- How large should they be? (What is c?)
- Bloom filters: use k hash functions, but only one medium-sized array.

Last Stop: Bloom Filters



s	hash_1(s)	hash_2(s)
"surf"	13	17
"sand"	8	6
"data"	15	1
"sun"	1	3
"beach"	5	9

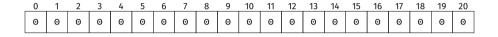
- Use one bit arrays of size c, but k hash functions.
- Insertion: Set arr[hash_1(x)] = 1, arr[hash_2(x)] = 1, ...,
 - arr[hash_k(x)] = 1.

Last Stop: Bloom Filters

s	hash_1(s)	hash_2(s)
"surf"	13	17
"sand"	8	6
"data"	15	1
"sun"	1	3
"beach"	5	9

- Use one bit arrays of size c, but k hash functions.
- Query: Return True if all of arr[hash_1(x)] = 1, arr[hash_2(x)] = 1, ..., arr[hash_k(x)] = 1.
- Example: hash_1("hello") == 3, hash_2("hello") == 2

Example



S	hı(s)	h2(s)	h3(s)
"surf" "sand"	13 8	17 6	3 19
"data"	15	3	7
"sun" "beach"	13	3 9	5 11
"justin"	13	7	8

- Insert "surf".
- Insert "sand".
- Insert "data".
- Query above strings.
- Query "sun".
- Query "beach".
- Query "justin".

Intuition

- Multiple hashing allows bit arrays to be smaller.
- Even more efficient: let them share memory.
- "Overlaps" are just collisions; we can handle them.

Exercise

What effect does increasing *k* have on the false positive rate? Can we increase it *too high*?

Tradeoffs

- Increasing k decreases false positive rate, but only to a point.
- Eventually, k is so large that we get too many overlaps.
- At this point, false positives start to increase again.

- Consider querying new, unseen object x.
- We'll look at k bits.
 arr[hash_1(x)], ..., arr[hash_k(x)].
- Fix one bit. What is the chance that it is already one?

- Probability of bit being zero after first element inserted: (1 – 1/c)^k
- After second element inserted: $(1 1/c)^{2k}$
- After all n elements inserted: (1 1/c)^{nk}
- And:

$$(1 - 1/c)^{nk} = [(1 - 1/c)^c]^{nk/c} \approx e^{-nk/c}$$

False Positive Rate

Probability of bit being **one** after *n* elements inserted:

$$1 - e^{-nk/c}$$

- For a false positive, all k bits (for each hash function) need to be one.
- Assuming independence,³ probability of false positive:

$$(1 - e^{-nk/c})^k$$

³Only true approximately. If this bit was set, some other bit was not.

Minimizing False Positives

For a fixed n and c, the number of hash functions k which minimizes the false positive rate is

Plugging this into the error rate:

$$\varepsilon = (1 - e^{-nk/c})^k \implies \ln \varepsilon = -\frac{c}{n} (\ln 2)^2$$

If we fix ε , then $c = -n \ln \varepsilon / (\ln 2)^2$

Summary: Designing Bloom Filters

- Suppose we wish to store n elements with ε false positive rate.
- Allocate a bit array with $c = -n \ln \varepsilon / (\ln 2)^2$ bits.

Pick $k = \frac{c}{n} \ln 2$ hash functions.

Example

▶ We need
$$c \approx 9.5n \rightarrow 10n$$
 bits = 1.25 GB.

▶ We choose
$$k = \frac{9.5n}{n} \ln 2 \rightarrow 7$$
 hash functions.

Lecture 17 | Part 4

Bloom Filters in Practice

Applications

- A cool data structure.
- Most useful when data is huge or memory is small.

- De-duplicate 1 billion strings, each about 100 bytes.
- Memory required for set: 100 gigabytes.
- Instead:
 - Loop through data, reading one string at a time.
 - If not in Bloom filter, write it to file.
- ▶ With 1% error rate, takes 1.25 GB.

A k-mer is a substring of length k in a DNA sequence:

"GATTACATATAGGTGTCGA"

- Useful: does a long string have a given k-mer?
- ▶ There are a *massive* number of possible *k*-mers.
 - 4^k , to be precise.
 - Example: there are over 10¹⁸ 30-mers.
- Slide window of size k over sequence, store each substring in Bloom filter.

- Human genome is a 725 Megabyte string, 2.9 billion characters.
- To store all k-mers, each character stored k times.
- Storing 30-mers in set would take 30 × 725 MB ≈ 22 GB.
- By "forgetting" the actual strings, Bloom filter (1% false positive) takes
 - 2.9 hillion hits ~ 360 magabytes

- Suppose you have a massive database on disk.
- Querying the database will take a while, since it has to go to disk.
- Build a Bloom filter, keep in memory.
 - If Bloom filter says x not in database, don't perform query.
 - Otherwise, perform DB query.
- Speeds up time of "misses".

Limits

Bloom filters are useful in certain circumstances.

But they have disadvantages:

- Need good idea of size, *n*, ahead of time.
- There are false positives.
- The elements are not stored (can't iterate over them).

Often a set does just fine, with some care.

Example

- Suppose you have 1 billion tweets.
- Want to de-duplicate them by tweet ID (64 bit number).
- ► Total size: 8 gigabytes.
- ▶ I have 4 GB RAM. Should I use a Bloom filter?

De-duplication Strategy

- Design a hash function that maps each tweet ID to {1, ..., 8}.
- Loop through tweet IDs one-at-a-time, hash, write to file:

hash(x) == $3 \rightarrow$ write to data_3.txt

Read in each file, one-at-a-time, de-duplicate with set, write to output.txt