DSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 17 Part 1

Today'’s Lecture

Massive Sets
You've collected 1 billion tweets.”

Goal: given the text of a new tweet, is it already
in the data set?

"This is about two days of activity.

Membership Queries

We want to perform a membership query on a
collection of strings.

Hash tables support ©(1) membership queries.

Idea: so let’s use a hash table (Python: set).

Problem: Memory

How much memory would a set of 1 billion
strings require?

Assume average string has 100 ASCII characters.

(8 bits per char)x(100 chars)=1 billion = 100 gigabytes

That's way too large to fit in memory!

Today'’s Lecture

Goal: fast membership queries on massive data
sets.

Today's answer: Bloom filters.

DSC /70

DATA STRUCTURES § ALELORITHMS
Lecture 17 @ Part 2

Bit Arrays

The Challenge

We want to perform membership queries on a
massive collection (too large to fit in memory).

We want to remember which elements are in the
collection...

..without actually storing all of the elements.

From hash tables to Bloom filters in 3 steps.

First Stop: Hash Tables

1 2 3 4 5 6 7 8 9
s hash(s)
"surf” 3
"sand” 8
"data” 5
sun” H "surf” H "data” ‘ @ "sun” 1
"beach” 5

Memory Usage
Problem: we're storing all of the elements.
Why? To resolve collisions.

Fix: ignore collisions.

Second Stop: Hashing Into Bit Arrays

S

hash(s)

"surf”
"sand”
"data”
"sun”
"beach”

g - 0100 W

Use a bit array arr of
size .

Insertion: Set
arr[hash(x)] = 1.

Query: Check if
arr[hash(x)] = 1.

Second Stop: Hashing Into Bit Arrays

S

hash(s)

"surf”
"sand”
"data”
"sun”
"beach”

g - 0100 W

Use a bit array arr of
size .

Insertion: Set
arr[hash(x)] = 1.

Query: Check if
arr[hash(x)] = 1.

Can be wrong!

False Positives

S

hash(s)

"surf”
"sand”
"data”
"sun”
"beach”

Ul = 0100 W

Query can return false
positives.

e.g.
hash(”ucsd”) == 3

Cannot return false
negatives.

Memory Usage
Requires c bits, where c is size of the bit array.

False positive rate depends on c.
c is small - more collisions — more errors
c is large — fewer collisions — fewer errors

Tradeoff: get more accuracy at cost of memory.

False Positive Rate
What is the probability of a false positive?

Suppose there are ¢ buckets, and we’ve inserted
n elements so far.

We query an object x that we haven't seen
before.

False positive & arr[hash(x)] == 1.

False Positive Rate

Assume hash assigns bucket uniformly at
random.
If x # y then, P(hash(x) = hash(y))=1/c

Prob. that first element does not collide with x:
1-1/c.

Prob. that first two do not collide: (1 - 1/c)%.

Prob. that all n elements do not collide:
(1-1/c).

False Positive Rate
Hint: for large z, (1-1/z)* = 1

So the probability of no collision is:

(1-1/c) =[(1-1/c)] = ele
This is the probability of no false positive.

Probability of false positive upon querying x:
~1- e-n/c

False Positive Rate

For fixed query, probability of false positive:
~1-eMlc,

n: number of elements stored

c: size of array (number of bits)

Randomness is over choice of hash function.
Once hash function is fixed, the result is always the
same.

Fixing False Positive Rate
Suppose we'll tolerate false positive rate of «.
Assume that we’ll store around n elements.

We can choose c:

n

—enlc S
1-e E = C (1 =€)

Example
Suppose we want < 1% error.

Previous slide says our bit array needs to be 100
times larger than number of elements stored.?

Memory when n = 10%: 1 billion bits x100 = 12.5
GB.

Can we do better?

2We could have guessed this, huh?

DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 17 Part 3

Bloom Filters

Wasted Space
Suppose we want < 1% error.

Our bit array needs to be 100 times larger than
number of elements stored.

That's a lot of wasted space!

Third Stop: Multiple Hashing

Idea: use several smaller bit arrays, each with
own hash function.

Third Stop: Multiple Hashing

0 1 2 3 4 6 7 8 9
el1 |0 |20 |1|06|0]|1] o0
0 1 4 7
elo|oe|o|1|e|1|l1]|0|1
s hash_1(s) hash_2(s)
"surf” 3 7
"sand” 8 7
"data” 5 4
"sun” 1 9
"beach” 5 6

Use k bit arrays of size
¢, each with own
independent hash
function.

Insertion: Set
arr_i[hash_1(x)] = 1,
arr_2[hash_2(x)] = 1,

;}r_k[hash_k(x)] = 1.

Third Stop: Multiple Hashing

0 1 2 3 4 5 6 7 8 9

0l1|0|1|0|1|06|06|1]|o0

0 1 4 6 7

el |o|loe 1|61 |1|0]|1
s hash_1(s) hash_2(s)
"surf” 3 7
"sand” 8 7
"data” 5 4
"sun” 1 9
"beach” 5 6

Use k bit arrays of size
¢, each with own
independent hash
function.

Query: Return True if
all of

arr_i[hash_1(x)] =
arr_2[hash_2(x)] =

;}r_k[hash_k(x)] =

Example:
hash_1("hello”
hash_2("hello”

~—
1
1

RGN

=

N

What effect does increasing k have on false posi-
tive rate?

Intuition

False positive occurs only if false positive in all
tables.

This is pretty unlikely.

If false positive rate in one table is small (but not
tiny), probability false positive in all tables is still
tiny.

More Formally

Probability of false positive in first table:
~1-eMc,

Probability of false positive in all k tables:
= (1-e)R,

Example: if ¢ = 4n and k = 3, error rate is = 1%.

Uses only 12 x n bits, as opposed to 100 x n from
before.

Last Stop: Bloom Filters

How many different bit arrays do we use? (What
is R?)

How large should they be? (What is ¢?)

Bloom filters: use R hash functions, but only one
medium-sized array.

Last Stop: Bloom Filters

17 18 19

0 1 2 3 4 5 6 7 8 9 10 M 12 13 14 15 16
[o [T [al o [ala] o [afa] o[o [[al e [a] o [a] o | |

20
°]

s hash_1(s) hash_2(s)
"surf” 13 17
"sand” 8 6
"data” 15 1
"sun” 1 3
"beach” 5 9

Use one bit arrays of
size ¢, but k hash
functions.

Insertion: Set

arr[hash_1(x)] = 1,
arr[hash_2(x)] = 1,
;;r[hash_k(x)] = 1.

Last Stop: Bloom Filters

Use one bit arrays of
size ¢, but R hash
0 1 2 3 4 5 6 7 8 9 10 n 12 13 14 15 16 17 18 19 20 functions

‘@‘1‘0 1‘5‘1 1‘0‘1‘1‘0‘0‘0‘1‘@‘1‘0‘1‘6‘6‘0‘

Query: Return True if
s hash_1(s) hash_2(s) all of

arr[hash_1(x)] 1,

"surf” 13 17 =
ot . . arr[hash_2(x)] = 1,
"dati 15 1 arr[hash_k(x)] = 1.
sun 1 3
"beach” 5 9
Example:
hash_1("hello”) ==

3
hash_2("hello”) == 2

Example

0 1 2 3 4 5 6 7 8 9 10 M 12 13 14 15 16 17 18 19 20
[ofefefefefefo]efefo]e]efe]efefe]efofe]e]o

Insert "surf”.

S hl(S) h2($) h3(5) Insert "Sand"
::surg:: 183 167 139 Insert "data”.

san :
maata” s 3 2 Query ibovs strings.
"sun” 1 3 5 Query "sun”.
"beach” 13 9 1 Query "beach”.
"justin” 13 7 8

Query "justin”.

Intuition
Multiple hashing allows bit arrays to be smaller.
Even more efficient: let them share memory.

“Overlaps” are just collisions; we can handle
them.

What effect does increasing k have on the false
positive rate? Can we increase it too high?

Tradeoffs

Increasing kR decreases false positive rate, but
only to a point.

Eventually, k is so large that we get too many
overlaps.

At this point, false positives start to increase
again.

False Positive Rate
Consider querying new, unseen object x.

We'll look at R bits.

arr[hash_1(x)], .., arr[hash_k(x)].

Fix one bit. What is the chance that it is already
one?

False Positive Rate

Probability of bit being zero after first element
inserted: (1-1/c)®

After second element inserted: (1 - 1/c)?*
After all n elements inserted: (1 - 1/c)"™

And:

(1-1/c)™* = [(1-1/c)]™/e = ekl

False Positive Rate

Probability of bit being one after n elements

inserted:
1- e—nk/c

For a false positive, all kR bits (for each hash
function) need to be one.

Assuming independence,® probability of false

positive:
(1 _ e—nk/C)k

30nly true approximately. If this bit was set, some other bit was not.

Minimizing False Positives

For a fixed n and ¢, the number of hash functions
kR which minimizes the false positive rate is

k=512
n

Plugging this into the error rate:

e=(1-e™y — |ne= —%(ln 2)?

If we fix &, then ¢ = -nlng/(ln 2)?

Summary: Designing Bloom Filters

Suppose we wish to store n elements with € false
positive rate.

Allocate a bit array with ¢ = -nln €/(ln 2)? bits.

Pick k = £ In 2 hash functions.

Example
Let n = 10°, € = 0.01.
We need ¢ = 9.5n — 10n bits = 1.25 GB.

We choose kR = 221 [n2 — 7 hash functions.

DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 17 Part 4

Bloom Filters in Practice

Applications
A cool data structure.

Most useful when data is huge or memory is
small.

Application #1

De-duplicate 1 billion strings, each about 100
bytes.

Memory required for set: 100 gigabytes.

Instead:
Loop through data, reading one string at a time.
If not in Bloom filter, write it to file.

With 1% error rate, takes 1.25 GB.

Application #2

A k-mer is a substring of length k in a DNA
sequence:

"GATTACATATAGGTGTCGA"”
Useful: does a long string have a given k-mer?

There are a massive number of possible k-mers.
4% to be precise.
Example: there are over 10'® 30-mers.

Slide window of size k over sequence, store each
substring in Bloom filter.

Application #2

Human genome is a 725 Megabyte string, 2.9
billion characters.

To store all k-mers, each character stored kR
times.

Storing 30-mers in set would take 30 x 725 MB =
22 GB.

By “forgetting” the actual strings, Bloom filter
(1% false positive) takes

750 hillinn hite ~ 260 maoac~hvtAac

Application #3
Suppose you have a massive database on disk.

Querying the database will take a while, since it
has to go to disk.

Build a Bloom filter, keep in memory.
If Bloom filter says x not in database, don’t perform
query.
Otherwise, perform DB query.

Speeds up time of “misses”.

Limits
Bloom filters are useful in certain circumstances.

But they have disadvantages:
Need good idea of size, n, ahead of time.
There are false positives.
The elements are not stored (can't iterate over them).

Often a set does just fine, with some care.

Example
Suppose you have 1 billion tweets.

Want to de-duplicate them by tweet ID (64 bit
number).

Total size: 8 gigabytes.

| have 4 GB RAM. Should | use a Bloom filter?

De-duplication Strategy

Design a hash function that maps each tweet ID
to {1,...,8}.

Loop through tweet IDs one-at-a-time, hash,
write to file:
hash(x) == 3 — write to data_3.txt

Read in each file, one-at-a-time, de-duplicate
with set, write to output.txt

