
Lecture 17 | Part 1

Today’s Lecture



Massive Sets

▶ You’ve collected 1 billion tweets.1

▶ Goal: given the text of a new tweet, is it already
in the data set?

1This is about two days of activity.



Membership Queries

▶ We want to perform a membership query on a
collection of strings.

▶ Hash tables support Θ(1) membership queries.

▶ Idea: so let’s use a hash table (Python: set).



Problem: Memory

▶ How much memory would a set of 1 billion
strings require?

▶ Assume average string has 100 ASCII characters.

(8 bits per char)×(100 chars)×1 billion = 100 gigabytes

▶ That’s way too large to fit in memory!



Today’s Lecture

▶ Goal: fast membership queries on massive data
sets.

▶ Today’s answer: Bloom filters.



Lecture 17 | Part 2

Bit Arrays



The Challenge

▶ We want to perform membership queries on a
massive collection (too large to fit in memory).

▶ We want to remember which elements are in the
collection...

▶ ...without actually storing all of the elements.

▶ From hash tables to Bloom filters in 3 steps.



First Stop: Hash Tables
0 1 2 3 4 5 6 7 8 9

”sun” ”surf” ”data”

”beach”

”sand”

s hash(s)

”surf” 3
”sand” 8
”data” 5
”sun” 1
”beach” 5



Memory Usage

▶ Problem: we’re storing all of the elements.

▶ Why? To resolve collisions.

▶ Fix: ignore collisions.



Second Stop: Hashing Into Bit Arrays

0
0

1
1

0
2

1
3

0
4

1
5

0
6

0
7

1
8

0
9

s hash(s)

”surf” 3
”sand” 8
”data” 5
”sun” 1
”beach” 5

▶ Use a bit array arr of
size 𝑐.

▶ Insertion: Set
arr[hash(x)] = 1.

▶ Query: Check if
arr[hash(x)] = 1.

▶ Can be wrong!



Second Stop: Hashing Into Bit Arrays

0
0

1
1

0
2

1
3

0
4

1
5

0
6

0
7

1
8

0
9

s hash(s)

”surf” 3
”sand” 8
”data” 5
”sun” 1
”beach” 5

▶ Use a bit array arr of
size 𝑐.

▶ Insertion: Set
arr[hash(x)] = 1.

▶ Query: Check if
arr[hash(x)] = 1.

▶ Can be wrong!



False Positives

0
0

1
1

0
2

1
3

0
4

1
5

0
6

0
7

1
8

0
9

s hash(s)

”surf” 3
”sand” 8
”data” 5
”sun” 1
”beach” 5

▶ Query can return false
positives.

▶ e.g.,
hash(”ucsd”) == 3

▶ Cannot return false
negatives.



Memory Usage

▶ Requires 𝑐 bits, where 𝑐 is size of the bit array.

▶ False positive rate depends on 𝑐.
▶ 𝑐 is small→ more collisions→ more errors
▶ 𝑐 is large→ fewer collisions→ fewer errors

▶ Tradeoff: get more accuracy at cost of memory.



False Positive Rate

▶ What is the probability of a false positive?

▶ Suppose there are 𝑐 buckets, and we’ve inserted
𝑛 elements so far.

▶ We query an object x that we haven’t seen
before.

▶ False positive⇔ arr[hash(x)] == 1.



False Positive Rate
▶ Assume hash assigns bucket uniformly at
random.
▶ If 𝑥 ≠ 𝑦 then, ℙ(hash(x) = hash(y)) = 1/𝑐

▶ Prob. that first element does not collide with x:
1 − 1/𝑐.

▶ Prob. that first two do not collide: (1 − 1/𝑐)2.

▶ Prob. that all 𝑛 elements do not collide:
(1 − 1/𝑐)𝑛.



False Positive Rate

▶ Hint: for large 𝑧, (1 − 1/𝑧)𝑧 ≈ 1
𝑒

▶ So the probability of no collision is:

(1 − 1/𝑐)𝑛 = [(1 − 1/𝑐)𝑐]𝑛/𝑐 ≈ 𝑒−𝑛/𝑐

▶ This is the probability of no false positive.

▶ Probability of false positive upon querying x:
≈ 1 − 𝑒−𝑛/𝑐



False Positive Rate

▶ For fixed query, probability of false positive:
≈ 1 − 𝑒−𝑛/𝑐.
▶ 𝑛: number of elements stored
▶ 𝑐: size of array (number of bits)

▶ Randomness is over choice of hash function.
▶ Once hash function is fixed, the result is always the
same.



Fixing False Positive Rate

▶ Suppose we’ll tolerate false positive rate of 𝜀.

▶ Assume that we’ll store around 𝑛 elements.

▶ We can choose 𝑐:

1 − 𝑒−𝑛/𝑐 = 𝜀 ⟹ 𝑐 = − 𝑛
ln(1 − 𝜀)



Example

▶ Suppose we want ≤ 1% error.

▶ Previous slide says our bit array needs to be 100
times larger than number of elements stored.2

▶ Memory when 𝑛 = 109: 1 billion bits ×100 = 12.5
GB.

▶ Can we do better?
2We could have guessed this, huh?



Lecture 17 | Part 3

Bloom Filters



Wasted Space

▶ Suppose we want ≤ 1% error.

▶ Our bit array needs to be 100 times larger than
number of elements stored.

▶ That’s a lot of wasted space!



Third Stop: Multiple Hashing

▶ Idea: use several smaller bit arrays, each with
own hash function.



Third Stop: Multiple Hashing

0
0

1
1

0
2

1
3

0
4

1
5

0
6

0
7

1
8

0
9

0
0

0
1

0
2

0
3

1
4

0
5

1
6

1
7

0
8

1
9

s hash_1(s) hash_2(s)

”surf” 3 7
”sand” 8 7
”data” 5 4
”sun” 1 9
”beach” 5 6

▶ Use 𝑘 bit arrays of size
𝑐, each with own
independent hash
function.

▶ Insertion: Set
arr_1[hash_1(x)] = 1,
arr_2[hash_2(x)] = 1,
…,
arr_k[hash_k(x)] = 1.



Third Stop: Multiple Hashing

0
0

1
1

0
2

1
3

0
4

1
5

0
6

0
7

1
8

0
9

0
0

0
1

0
2

0
3

1
4

0
5

1
6

1
7

0
8

1
9

s hash_1(s) hash_2(s)

”surf” 3 7
”sand” 8 7
”data” 5 4
”sun” 1 9
”beach” 5 6

▶ Use 𝑘 bit arrays of size
𝑐, each with own
independent hash
function.

▶ Query: Return True if
all of
arr_1[hash_1(x)] = 1,
arr_2[hash_2(x)] = 1,
…,
arr_k[hash_k(x)] = 1.

▶ Example:
hash_1(”hello”) == 3,
hash_2(”hello”) == 2



Exercise

What effect does increasing 𝑘 have on false posi-
tive rate?



Intuition

▶ False positive occurs only if false positive in all
tables.

▶ This is pretty unlikely.

▶ If false positive rate in one table is small (but not
tiny), probability false positive in all tables is still
tiny.



More Formally

▶ Probability of false positive in first table:
≈ 1 − 𝑒−𝑛/𝑐.

▶ Probability of false positive in all 𝑘 tables:
≈ (1 − 𝑒−𝑛/𝑐)𝑘.

▶ Example: if 𝑐 = 4𝑛 and 𝑘 = 3, error rate is ≈ 1%.

▶ Uses only 12 × 𝑛 bits, as opposed to 100 × 𝑛 from
before.



Last Stop: Bloom Filters

▶ How many different bit arrays do we use? (What
is 𝑘?)

▶ How large should they be? (What is 𝑐?)

▶ Bloom filters: use 𝑘 hash functions, but only one
medium-sized array.



Last Stop: Bloom Filters

0
0

1
1

0
2

1
3

0
4

1
5

1
6

0
7

1
8

1
9

0
10

0
11

0
12

1
13

0
14

1
15

0
16

1
17

0
18

0
19

0
20

s hash_1(s) hash_2(s)

”surf” 13 17
”sand” 8 6
”data” 15 1
”sun” 1 3
”beach” 5 9

▶ Use one bit arrays of
size 𝑐, but 𝑘 hash
functions.

▶ Insertion: Set
arr[hash_1(x)] = 1,
arr[hash_2(x)] = 1,
…,
arr[hash_k(x)] = 1.



Last Stop: Bloom Filters

0
0

1
1

0
2

1
3

0
4

1
5

1
6

0
7

1
8

1
9

0
10

0
11

0
12

1
13

0
14

1
15

0
16

1
17

0
18

0
19

0
20

s hash_1(s) hash_2(s)

”surf” 13 17
”sand” 8 6
”data” 15 1
”sun” 1 3
”beach” 5 9

▶ Use one bit arrays of
size 𝑐, but 𝑘 hash
functions.

▶ Query: Return True if
all of
arr[hash_1(x)] = 1,
arr[hash_2(x)] = 1,
…,
arr[hash_k(x)] = 1.

▶ Example:
hash_1(”hello”) == 3,
hash_2(”hello”) == 2



Example

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

s h1(s) h2(s) h3(s)

”surf” 13 17 3
”sand” 8 6 19
”data” 15 3 7
”sun” 1 3 5
”beach” 13 9 11
”justin” 13 7 8

▶ Insert ”surf”.
▶ Insert ”sand”.
▶ Insert ”data”.
▶ Query above strings.
▶ Query ”sun”.
▶ Query ”beach”.
▶ Query ”justin”.



Intuition

▶ Multiple hashing allows bit arrays to be smaller.

▶ Even more efficient: let them share memory.

▶ “Overlaps” are just collisions; we can handle
them.



Exercise

What effect does increasing 𝑘 have on the false
positive rate? Can we increase it too high?



Tradeoffs

▶ Increasing 𝑘 decreases false positive rate, but
only to a point.

▶ Eventually, 𝑘 is so large that we get too many
overlaps.

▶ At this point, false positives start to increase
again.



False Positive Rate

▶ Consider querying new, unseen object x.

▶ We’ll look at 𝑘 bits.
▶ arr[hash_1(x)], …, arr[hash_k(x)].

▶ Fix one bit. What is the chance that it is already
one?



False Positive Rate

▶ Probability of bit being zero after first element
inserted: (1 − 1/𝑐)𝑘

▶ After second element inserted: (1 − 1/𝑐)2𝑘

▶ After all 𝑛 elements inserted: (1 − 1/𝑐)𝑛𝑘

▶ And:

(1 − 1/𝑐)𝑛𝑘 = [(1 − 1/𝑐)𝑐]𝑛𝑘/𝑐 ≈ 𝑒−𝑛𝑘/𝑐



False Positive Rate

▶ Probability of bit being one after 𝑛 elements
inserted:

1 − 𝑒−𝑛𝑘/𝑐

▶ For a false positive, all 𝑘 bits (for each hash
function) need to be one.

▶ Assuming independence,3 probability of false
positive:

(1 − 𝑒−𝑛𝑘/𝑐)𝑘
3Only true approximately. If this bit was set, some other bit was not.



Minimizing False Positives

▶ For a fixed 𝑛 and 𝑐, the number of hash functions
𝑘 which minimizes the false positive rate is

𝑘 = 𝑐𝑛 ln 2

▶ Plugging this into the error rate:

𝜀 = (1 − 𝑒−𝑛𝑘/𝑐)𝑘 ⟹ ln𝜀 = −𝑐𝑛(ln 2)
2

▶ If we fix 𝜀, then 𝑐 = −𝑛 ln 𝜀/(ln 2)2



Summary: Designing Bloom Filters

▶ Suppose we wish to store 𝑛 elements with 𝜀 false
positive rate.

▶ Allocate a bit array with 𝑐 = −𝑛 ln 𝜀/(ln 2)2 bits.

▶ Pick 𝑘 = 𝑐
𝑛 ln 2 hash functions.



Example

▶ Let 𝑛 = 109, 𝜀 = 0.01.

▶ We need 𝑐 ≈ 9.5𝑛 → 10𝑛 bits = 1.25 GB.

▶ We choose 𝑘 = 9.5𝑛
𝑛 ln 2 → 7 hash functions.



Lecture 17 | Part 4

Bloom Filters in Practice



Applications

▶ A cool data structure.

▶ Most useful when data is huge or memory is
small.



Application #1

▶ De-duplicate 1 billion strings, each about 100
bytes.

▶ Memory required for set: 100 gigabytes.

▶ Instead:
▶ Loop through data, reading one string at a time.
▶ If not in Bloom filter, write it to file.

▶ With 1% error rate, takes 1.25 GB.



Application #2
▶ A 𝑘-mer is a substring of length 𝑘 in a DNA
sequence:

”GATTACATATAGGTGTCGA”

▶ Useful: does a long string have a given 𝑘-mer?

▶ There are a massive number of possible 𝑘-mers.
▶ 4𝑘, to be precise.
▶ Example: there are over 1018 30-mers.

▶ Slide window of size 𝑘 over sequence, store each
substring in Bloom filter.



Application #2
▶ Human genome is a 725 Megabyte string, 2.9
billion characters.

▶ To store all 𝑘-mers, each character stored 𝑘
times.

▶ Storing 30-mers in set would take 30 × 725 MB ≈
22 GB.

▶ By “forgetting” the actual strings, Bloom filter
(1% false positive) takes

2.9 billion bits ≈ 360 megabytes



Application #3

▶ Suppose you have a massive database on disk.

▶ Querying the database will take a while, since it
has to go to disk.

▶ Build a Bloom filter, keep in memory.
▶ If Bloom filter says 𝑥 not in database, don’t perform
query.

▶ Otherwise, perform DB query.

▶ Speeds up time of “misses”.



Limits

▶ Bloom filters are useful in certain circumstances.

▶ But they have disadvantages:
▶ Need good idea of size, 𝑛, ahead of time.
▶ There are false positives.
▶ The elements are not stored (can’t iterate over them).

▶ Often a set does just fine, with some care.



Example

▶ Suppose you have 1 billion tweets.

▶ Want to de-duplicate them by tweet ID (64 bit
number).

▶ Total size: 8 gigabytes.

▶ I have 4 GB RAM. Should I use a Bloom filter?



De-duplication Strategy

▶ Design a hash function that maps each tweet ID
to {1, … , 8}.

▶ Loop through tweet IDs one-at-a-time, hash,
write to file:

hash(x) == 3→ write to data_3.txt

▶ Read in each file, one-at-a-time, de-duplicate
with set, write to output.txt


