DSC 190 Lecture 17 | Part Today's Lectur

Massive Sets

- You've collected 1 billion tweets. ${ }^{1}$
- Goal: given the text of a new tweet, is it already in the data set?
${ }^{1}$ This is about two days of activity.

Membership Queries

- We want to perform a membership query on a collection of strings.
- Hash tables support $\Theta(1)$ membership queries.
- Idea: so let's use a hash table (Python: set).

Problem: Memory

- How much memory would a set of 1 billion strings require?
- Assume average string has 100 ASCII characters.
$(8$ bits per char) $\times(100$ chars $) \times 1$ billion $=100$ gigabytes
- That's way too large to fit in memory!

Today's Lecture

Goal: fast membership queries on massive data sets.

- Today's answer: Bloom filters.

$$
\begin{aligned}
& \text { DSt } 190 \\
& \text { Bit Arrays }
\end{aligned}
$$

The Challenge

- We want to perform membership queries on a massive collection (too large to fit in memory).
- We want to remember which elements are in the collection...
- ...without actually storing all of the elements.
- From hash tables to Bloom filters in 3 steps.

First Stop: Hash Tables

s	hash(s)
"surf"	3
"sand"	8
"data"	5
"sun"	1
"beach"	5
"justin"	5

Memory Usage

- Problem: we're storing all of the elements.

Why? To resolve collisions.

- Fix: ignore collisions.

Second Stop: Hashing Into Bit Arrays

0	1	2	3	4	5	6	7	8	9
	1	\odot	1	\odot	1	\odot	\odot	1	\odot

- Use a bit array arr of size c.
- Insertion: Set
$\operatorname{arr}[\operatorname{hash}(x)]=1$.
- Query: Check if $\operatorname{arr}[h a s h(x)]=1$.

$$
\text { hain ("justin") }==5
$$

Second Stop: Hashing Into Bit Arrays

0	1	2	3	4	5	6	7	8	9
	1	\odot	1	\odot	1	\odot	\odot	1	\odot

s	hash(s)
"surf"	3
"sand"	8
"data"	5
"sun"	1
"beach"	5

- Use a bit array arr of size c.
- Insertion: Set
$\operatorname{arr}[\operatorname{hash}(x)]=1$.
- Query: Check if $\operatorname{arr}[h a s h(x)]=1$.
- Can be wrong!

False Positives

0	1	2	3	4	5	6	7	8	9
	1	\odot	1	\odot	1	\odot	\odot	1	\odot

s	hash(s)
"surf"	3
"sand"	8
"data"	5
"sun"	1
"beach"	5

- Query can return false positives.
- e.g.,
hash("ucsd") == 3
- Cannot return false negatives.

Memory Usage

- Requires c bits, where c is size of the bit array.
- False positive rate depends on c.
$\rightarrow c$ is small \rightarrow more collisions \rightarrow more errors
$\Rightarrow c$ is large \rightarrow fewer collisions \rightarrow fewer errors
- Tradeoff: get more accuracy at cost of memory.

False Positive Rate

- What is the probability of a false positive?
- Suppose there are c buckets, and we've inserted n elements so far.
- We query an object x that we haven't seen before.
- False positive $\Leftrightarrow \operatorname{arr}[h a s h(x)]==1$.

False Positive Rate

- Assume hash assigns bucket uniformly at random.
- If $x \neq y$ then, $\mathbb{P}(\operatorname{hash}(x)=\operatorname{hash}(y))=1 / C$
- Prob. that first element does not collide with x : 1-1/c.
- Prob. that first two do not collide: $(1-1 / c)^{2}$.

$$
=P(\text { first doer }) \times P(\text { second doesnt })
$$

- Prob. that all n elements do not collide: $(1-1 / c)^{n}$.

False Positive Rate

- Hint: for large $z,(1-1 / z)^{2} \approx \frac{1}{e}$
- So the probability of no collision is:

$$
(1-1 / c)^{n}=\left[(1-1 / c)^{c}\right]^{n / c} \approx e^{-n / c}
$$

- This is the probability of no false positive.
- Probability of false positive upon querying x : $\approx 1-e^{-n / c}$

False Positive Rate

- For fixed query, probability of false positive:
$\approx 1-e^{-n / c}$.
- n : number of elements stored
- c : size of array (number of bits)
- Randomness is over choice of hash function.
- Once hash function is fixed, the result is always the same.

Fixing False Positive Rate

- Suppose we'll tolerate false positive rate of ε.
- Assume that we'll store around n elements.
- We can choose c :

$$
1-e^{-n / c}=\varepsilon \quad \Longrightarrow \quad c=-\frac{n}{\ln (1-\varepsilon)}
$$

Example

- Suppose we want $\leq 1 \%$ error.
- Previous slide says our bit array needs to be 100 times larger than number of elements stored. ${ }^{2}$
- Memory when $n=10^{9}: 1$ billion bits $\times 100=12.5$ GB.
- Can we do better?
${ }^{2}$ We could have guessed this, huh?

DST 190
Lecture 17 | Part
Bloom Filters

Wasted Space

- Suppose we want $\leq 1 \%$ error.
- Our bit array needs to be 100 times larger than number of elements stored.
- That's a lot of wasted space!

Third Stop: Multiple Hashing

Idea: use several smaller bit arrays, each with own hash function.

Third Stop: Multiple Hashing

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \odot | 1 | \odot | 1 | \odot | 1 | \odot | \odot | 1 | \odot |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| \odot | \odot | \odot | \odot | 1 | \odot | 1 | 1 | \odot | 1 |

s	hash_1(s)	hash_2(s)
"surf"	3	7
"sand"	8	7
"data"	5	4
"sun"	1	9
"beach"	5	6

- Use k bit arrays of size c, each with own independent hash function.
- Insertion: Set

```
arr_1[hash_1(x)] = 1,
arr_2[hash_2(x)] = 1,
...,
arr_k[hash_k(x)] = 1.
```


Third Stop: Multiple Hashing

0	1	2	3	4	5	6	7	8	9
\odot	1	\odot	1	\odot	1	\odot	\odot	1	\odot
0	1	2	3	4	5	6	7	8	9
	\odot	\odot	\odot	1	\odot	1	1	\odot	1

s	hash_1(s)	hash_2(s)
"surf"	3	7
"sand"	8	7
"data"	5	4
"sun"	1	9
"beach"	5	6
jwatin	3	5

- Use k bit arrays of size c, each with own independent hash function.
- Query: Return True if all of
arr_1[hash_1(x)] = 1, arr_2[hash_2(x)] = 1,
...,
arr_k[hash_k(x)] = 1.
- Example:
hash_1("hello") == 3, hash_2("hello") == 2

Exercise

What effect does increasing k have on false positive rate?

Intuition

- False positive occurs only if false positive in all tables.
- This is pretty unlikely.
- If false positive rate in one table is small (but not tiny), probability false positive in all tables is still tiny.

More Formally

- Probability of false positive in first table:
$\approx 1-e^{-n / c}$.
- Probability of false positive in all k tables:
$\approx\left(1-e^{-n / c}\right)^{k}$.
- Example: if $c=4 n$ and $k=3$, error rate is $\approx 1 \%$.
- Uses only $12 \times n$ bits, as opposed to $100 \times n$ from before.

Last Stop: Bloom Filters

- How many different bit arrays do we use? (What is k ?)
- How large should they be? (What is c?)
- Bloom filters: use k hash functions, but only one medium-sized array.

Last Stop: Bloom Filters

s	hash_1(s)	hash_2(s)
"surf"	13	17
"sand"	8	6
"data"	15	1
"sun"	1	3
"beach"	5	9

- Use one bit arrays of size c, but k hash functions.
- Insertion: Set $\operatorname{arr}[$ hash_1(x)] = 1 , arr[hash_2(x)] = 1, $\operatorname{arr}\left[h a s h _k(x)\right]=1$.

Last Stop: Bloom Filters

s	hash_1(s)	hash_2(s)
"surf"	13	17
"sand"	8	6
"data"	15	1
"sun"	1	3
"beach"	5	9

- Use one bit arrays of size c, but k hash functions.
- Query: Return True if all of arr $[$ hash_1(x)] = 1, $\operatorname{arr}[$ hash_2(x)] = 1 ,
...,
$\operatorname{arr}\left[h a s h _k(x)\right]=1$.
- Example: hash_1("hello") == 3, hash_2("hello") ==

Example

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0	\bigcirc	\bigcirc	\$	\bigcirc	\bigcirc	\$	9	\$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\$	\bigcirc	p	\bigcirc	d	\bigcirc	\$	\bigcirc

s	h1 (s)	h2(s)	h3(s)
"surf"	13	17	3
"sand"	8	6	19
"data"	15	3	7
"sun"	1	3	5
"beach"	13	9	11
"justin"	13	7	8

> Insert "surf".
> Insert "sand".

- Insert "data".
- Query above strings.
- Query "sun". no
- Query "beach". no
> Query "justin". yes x

Example

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	\bigcirc	1	1	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	\bigcirc	\bigcirc

s	h1 (s)	h2 (s)	h3 (s)
"hello"	2	7	3
"testing"	8	17	0

Is "hello" in the set?ls "testing" in the set?

Intuition

- Multiple hashing allows bit arrays to be smaller.
- Even more efficient: let them share memory.
- "Overlaps" are just collisions; we can handle them.

Exercise

What effect does increasing k have on the false positive rate? Can we increase it too high?

Tradeoffs

- Increasing k decreases false positive rate, but only to a point.
- Eventually, k is so large that we get too many overlaps.
- At this point, false positives start to increase again.

False Positive Rate

- Consider querying new, unseen object x.
- We'll look at k bits.
- arr[hash_1(x)],..., arr[hash_k(x)].
- Fix one bit. What is the chance that it is already one?

False Positive Rate

- Probability of bit being zero after first element inserted: $(1-1 / c)^{k}$
- After second element inserted: $(1-1 / c)^{2 k}$
- After all n elements inserted: $(1-1 / c)^{n k}$
- And:

$$
(1-1 / c)^{n k}=\left[(1-1 / c)^{c}\right]^{n k / c} \approx e^{-n k / c}
$$

False Positive Rate

- Probability of bit being one after n elements inserted:

$$
1-e^{-n k / c}
$$

- For a false positive, all k bits (for each hash function) need to be one.
- Assuming independence, ${ }^{3}$ probability of false positive:

$$
\left(1-e^{-n k / c}\right)^{k}
$$

${ }^{3}$ Only true approximately. If this bit was set, some other bit was not.

Minimizing False Positives

- For a fixed n and c, the number of hash functions k which minimizes the false positive rate is

$$
k=\frac{c}{n} \ln 2
$$

- Plugging this into the error rate:

$$
\varepsilon=\left(1-e^{-n k / c}\right)^{k} \Longrightarrow \quad \ln \varepsilon=-\frac{c}{n}(\ln 2)^{2}
$$

\downarrow If we fix ε, then $c=-n \ln \varepsilon /(\ln 2)^{2}$

$\ln \frac{1}{10} \quad \ln \frac{1}{100}$
 $\ln (1) \cdot \ln (10) \quad \ln (1)-\ln (100)$
 Summary: Designing Bloom Filters

- Suppose we wish to store n elements with ε false positive rate.
- Allocate a bit array with $c=-n \ln \varepsilon /(\ln 2)^{2}$ bits.
\Rightarrow Pick $k=\frac{c}{n} \ln 2$ hash functions.

Example

- Let $n=10^{9}, \varepsilon=0.01$.
- We need $c \approx 9.5 n \rightarrow 10 n$ bits $=1.25 \mathrm{~GB}$.

We choose $k=\frac{9.5 n}{n} \ln 2 \rightarrow 7$ hash functions.

DST 190
Lecture 17 | Part 4
Bloom Filters in Practice Bloom Filters in Practi

Applications

- A cool data structure.
- Most useful when data is huge or memory is small.

Application \#1

- De-duplicate 1 billion strings, each about 100 bytes.
- Memory required for set: 100 gigabytes.
- Instead:
- Loop through data, reading one string at a time.
- If not in Bloom filter, write it to file.
- With 1% error rate, takes 1.25 GB.

Application \#2

\Rightarrow A k-mer is a substring of length k in a DNA sequence:

> "GATTACATATAGGTGTCGA"

- Useful: does a long string have a given k-mer?
- There are a massive number of possible k-mers.
$\downarrow 4^{k}$, to be precise.
- Example: there are over $10^{18} 30$-mers.
- Slide window of size k over sequence, store each substring in Bloom filter.

Application \#2

- Human genome is a 725 Megabyte string, 2.9 billion characters.
- To store all k-mers, each character stored k times.
- Storing 30-mers in set would take $30 \times 725 \mathrm{MB} \approx$ 22 GB.
- By "forgetting" the actual strings, Bloom filter (1\% false positive) takes

Application \#3

- Suppose you have a massive database on disk.
- Querying the database will take a while, since it has to go to disk.
- Build a Bloom filter, keep in memory.
\rightarrow If Bloom filter says x not in database, don't perform query.
- Otherwise, perform DB query.
- Speeds up time of "misses".

Limits

- Bloom filters are useful in certain circumstances.
- But they have disadvantages:
$>$ Need good idea of size, n, ahead of time.
- There are false positives.
- The elements are not stored (can't iterate over them).
- Often a set does just fine, with some care.

Example

- Suppose you have 1 billion tweets.
- Want to de-duplicate them by tweet ID (64 bit number).
- Total size: 8 gigabytes.
- I have 4 GB RAM. Should I use a Bloom filter?

De-duplication Strategy

- Design a hash function that maps each tweet ID to $\{1, \ldots, 8\}$.
- Loop through tweet IDs one-at-a-time, hash, write to file:

$$
\operatorname{hash}(x)==3 \rightarrow \text { write to data_3.txt }
$$

- Read in each file, one-at-a-time, de-duplicate with set, write to output.txt

