
Lecture 16 | Part 1

Suffix Tries and Suffix Trees

Last Time

▶ We have seen tries.

▶ They provide for very fast prefix searches.

▶ But we don’t do a lot of prefix searches...

Today’s Lecture

▶ A way of using tries for solving much more
interesting problems.

String Matching
(Substring Search)

▶ Given: a string, s, and a pattern string p

▶ Determine: all locations of p in s

▶ Example:

s = ”GATTACATACG” p = ”TAC”

Recall

▶ We’ve solved this with Rabin-Karp in Θ(|𝑠| + |𝑝|)
expected time.

▶ What if we want to do many searches?

▶ Let’s build a data structure for fast substring
search.

Suffixes

▶ A suffix p of a string s is a contiguous slice of the
form s[t:], for some 𝑡.

▶ Examples:
▶ ”ing” is a suffix of ”testing”
▶ ”ting” is a suffix of ”testing”
▶ ”di” is not a suffix of ”san diego”

A Very Important Observation

▶ 𝑤 is a substring of 𝑠 if and only if 𝑤 is a prefix of
some suffix of 𝑠.
s = ”california”
p_1 = ”ifo”
p_2 = ”lif”
p_3 = ”flurb”

”california”
”alifornia”
”lifornia”
”ifornia”
”fornia”
”ornia”
”rnia”
”nia”
”ia”
”a”
””

Idea

▶ Last time: can do fast prefix search with trie.

▶ Idea for fast repeated substring search of 𝑠:
▶ Keep track track of all suffixes of 𝑠 in a trie.
▶ Given a search pattern 𝑝, look up 𝑝 in trie.

▶ A trie containing all suffixes of 𝑠 is a suffix trie
for 𝑠.

0

1

3

4

2

4

5

6

b

a

n

a

n

a

s

$

a

n

a

n

a

s

$

s

$

s

$

n

a

n

a

s

$

s

$

s

$

$

s[0:]: ”bananas”
s[1:]: ”ananas”
s[2:]: ”nanas”
s[3:]: ”anas”
s[4:]: ”nas”
s[5:]: ”as”
s[6:]: ”s”
s[7:]: ””

0

1

3

4

2

4

5

6

b

a

n

a

n

a

s

$

a

n

a

n

a

s

$

s

$

s

$

n

a

n

a

s

$

s

$

s

$

$ Substring
Search

▶ Given pattern 𝑝, walk
down suffix trie.

▶ If we fall off, return [].

▶ Else, do a DFS of that
subtrie. Each leaf is a
match.

▶ Time complexity:
Θ(|𝑝| + 𝑘), where 𝑘 is
number of nodes in the
subtrie.

Problems

▶ In the worst case, a suffix tree for 𝑠 has Θ(|𝑠|2)
nodes.
▶ Suffixes of length |𝑠|, |𝑠| − 1, |𝑠| − 2, …,

▶ So substring search can take Θ(|𝑠|2) time.

▶ Construction therefore takes Ω(|𝑠|2), too.
▶ Naïve algorithm takes Θ(|𝑠|2) time.

▶ Takes Θ(|𝑠|2) storage.

0

1

3

4

2

4

5

6

b

a

n

a

n

a

s

$

a

n

a

n

a

s

$

s

$

s

$

n

a

n

a

s

$

s

$

s

$

$

Silly Nodes
▶ A silly node has one
child.

▶ Fix: “Collapse” silly
nodes?

0

1 3

5 2 4

6 7

bananas$

a

n
a

n
a
s
$

s
$

s
$

n
a

n
a
s
$

s
$

s
$ $ “Collapsing”

Silly Nodes
s[0:]: ”bananas”
s[1:]: ”ananas”
s[2:]: ”nanas”
s[3:]: ”anas”
s[4:]: ”nas”
s[5:]: ”as”
s[6:]: ”s”
s[7:]: ””

0

1 3

5 2 4

6 7

bananas$

a

n
a

n
a
s
$

s
$

s
$

n
a

n
a
s
$

s
$

s
$ $

Suffix Trees
▶ This is a suffix treea.

▶ Internal nodes
represent branching
words.

▶ Leaf nodes represent
suffixes.

▶ Leafs are labeled by
starting index of suffix.

aNot to be confused with a
suffix trie.

Branching Words
▶ Suppose 𝑠′ is a substring of 𝑠.

▶ An extension of 𝑠′ is a substring of 𝑠 of the form:

𝑠′ + one more character

▶ Example: s = ”bananas”,
▶ ”ana”→ {”anas”, ”anan”}
▶ ”a”→ {”an”, ”as”}
▶ ”ban”→ {”bana”}

Branching Words

▶ A branching word is a substring of 𝑠 with more
than one extension.

▶ Example: s = ”bananas”,
▶ ”ana”→ {”anas”, ”anan”} (yes)
▶ ”a”→ {”an”, ”as”} (yes)
▶ ”ban”→ {”bana”} (no)

0

1 3

5 2 4

6 7

bananas$

a

n
a

n
a
s
$

s
$

s
$

n
a

n
a
s
$

s
$

s
$ $ Branching

Words
▶ ”a”, ”ana”, ”na” are
branching words in
”bananas”.

▶ Internal nodes of the
suffix tree represent
branching words.

Number of Branching Words

▶ There are 𝑂(|𝑠|) branching words.

▶ Proof:
▶ Remove all of the internal nodes (branching words).
▶ Now there are |𝑠| forests (one for each suffix).
▶ Add the internal nodes back, one at a time.
▶ Each addition reduces number of forests by one.
▶ After adding |𝑠| − 1 internal nodes, forest has one
tree.

▶ Therefore there are at most |𝑠| − 1 internal nodes.

Size of Suffix Trees

▶ A suffix tree for any string 𝑠 has Θ(|𝑠|) nodes.

0

1 3

5 2 4

6 7

bananas$

a

n
a

n
a
s
$

s
$

s
$

n
a

n
a
s
$

s
$

s
$ $

Substring
Search

▶ Given pattern 𝑝, walk
down suffix trie.

▶ If we fall off, return [].

▶ Else, do a DFS of that
subtree. Each leaf is a
match.

▶ Time complexity:
Θ(|𝑝| + 𝑧), where 𝑧 is
number of matches.

Naïve Construction Algorithm

▶ First, build a suffix trie in Ω(|𝑠|2) time in worst
case.
▶ Loop through the |𝑠| suffixes, insert each into trie.

▶ Then “collapse” silly nodes.

▶ Takes Ω(|𝑠|2) time. Bad.

Faster Construction

▶ There are (surprisingly) 𝑂(|𝑠|) algorithms for
constructing suffix trees.

▶ For instance, Ukkonen’s Algorithm.

Single Substring Search

Rabin-Karp

▶ Rolling hash of window.

▶ Θ(|𝑠| + |𝑝|) time.

Suffix Tree

▶ Construct suffix tree; Θ(|𝑠|)
time.

▶ Search it; Θ(|𝑝| + 𝑧) time.

▶ Total: Θ(|𝑠| + |𝑝|), since
𝑧 = 𝑂(|𝑠|).

Multiple Substring Search

Multiple searches of 𝑠 with different patterns, 𝑝1, 𝑝2,
…

Rabin-Karp

▶ First search: Θ(|𝑠| + |𝑝1|).

▶ Second search: Θ(|𝑠| + |𝑝2|).

Suffix Tree

▶ Construct suffix tree; Θ(|𝑠|)
time.

▶ First search: Θ(|𝑝1| + 𝑧1) time.

▶ Second search: Θ(|𝑝2| + 𝑧2)
time.

▶ Typically 𝑧 ≪ |𝑠|

Suffix Trees

▶ Many other string problems can be solved
efficiently with suffix trees!

Lecture 16 | Part 2

Longest Repeated Substring

Repeating Substrings

▶ A substring of 𝑠 is repeated if it occurs more
than once.

▶ Example: s = ”bananas”.
▶ ”na”
▶ ”ana”

Repeating Substrings in Genomics

▶ A repeated substring in a DNA sequence is
interesting.

▶ It’s a “building block” of that gene.

GATTACAGTAGCGATGATTACAGGTGATTACA

Repeating Substrings in Genomics

▶ A repeated substring in a DNA sequence is
interesting.

▶ It’s a “building block” of that gene.

GATTACAGTAGCGATGATTACAGGTGATTACA

Longest Repeated Substrings

▶ The longer a repeated substring, the more
interesting.

▶ Given: a string, 𝑠.

▶ Find: a repeated substring with longest length.

Brute Force

▶ Keep a dictionary of substring counts.

▶ Loop a window of size 1 over 𝑠.

▶ Loop a window of size 2 over 𝑠.

▶ Loop a window of size 3 over 𝑠, etc.

▶ Θ(|𝑠|2) time.

Suffix Trees

▶ We’ll do this in Θ(|𝑠|) time with a suffix tree.

Branching Words & Repeated
Substrings

▶ Recall: a branching word is a substring with more
than one extension.

▶ If a substring is repeated, is it necessarily a
branching word?

▶ No. Example: ”barkbark”.
▶ ”bar” is repeated, not branching: {”bark”}.
▶ ”bark” is repeated, is branching:
{”barkb”, ”bark$”}.

Branching Words & Repeated
Substrings

▶ Recall: a branching word is a substring with more
than one extension.

▶ If a substring is repeated, is it necessarily a
branching word?

▶ No. Example: ”barkbark”.
▶ ”bar” is repeated, not branching: {”bark”}.
▶ ”bark” is repeated, is branching:
{”barkb”, ”bark$”}.

Claim

▶ If a substring 𝑤 is repeated but not a branching
word, it can’t be the longest.

▶ Why? Since it isn’t branching, it has one
extension: 𝑤′.

▶ 𝑤′ must also repeat, since 𝑤 repeats.

▶ 𝑤′ is longer than 𝑤, so 𝑤 can’t be the longest.

Claim
▶ Not all repeated substrings are branching words.

▶ However, a longest repeated substring must be a
branching word.

▶ The internal nodes of the suffix tree are branching words.

▶ Claim: the longest repeated substring must be an internal
node of the suffix tree of 𝑠.

0

1 3

5 2 4

6 7

bananas$

a

n
a

n
a
s
$

s
$

s
$

n
a

n
a
s
$

s
$

s
$ $ LRS

▶ Build suffix tree in
Θ(|𝑠|) time.

▶ Do a DFS in Θ(|𝑠|) time.

▶ Keep track of “deepest”
internal node. (Depth
determined by number
of characters.)

▶ This is a longest
repeated substring;
found in Θ(|𝑠|) time.

