DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 16 = Part1

Suffix Tries and Suffix Trees

Last Time
We have seen tries.
They provide for very fast prefix searches.

But we don’t do a lot of prefix searches...

Today'’s Lecture

A way of using tries for solving much more
interesting problems.

String Matching

(Substring Search)
Given: a string, s, and a pattern string p
Determine: all locations of pin s

Example:

s = "GATTACATACG” p = "TAC”

Recall

We've solved this with Rabin-Karp in ©(|s| + |p])
expected time.

What if we want to do many searches?

Let’s build a data structure for fast substring
search.

Suffixes

A suffix p of a string s is a contiguous slice of the
form s[t:], for somet.

Examples:
"ing” is a suffix of "testing”
"ting” is a suffix of "testing”
"di” is not a suffix of "san diego”

A Very Important Observation

w is a substring of s if and only if w is a prefix of
some suffix of s.

"california” "california”
"ifo” "alifornia”
"Lif” "lifornia”
"flurb” "ifornia”
"fornia”
"ornia”
"rnia”
"nia"
"ia"
”n n

a

”nn

'OI'O'OU)
W N R

Idea
Last time: can do fast prefix search with trie.

Idea for fast repeated substring search of s:
Keep track track of all suffixes of s in a trie.
Given a search pattern p, look up p in trie.

A trie containing all suffixes of s is a suffix trie
for s.

¢ 9
e ¢ ®
'

o

slo:]:
s[1:]:
s[2:]:
s[3:]:
sl4:]:
s[5:1]:
s[6:
s[7:1:

e e e e e e e

"bananas”
"ananas”
"nanas”
"anas”
"naS"
"aS"

: "s"

nn

Substring
Search

Given pattern p, walk
down suffix trie.

If we fall off, return [].

Else, do a DFS of that
subtrie. Each leaf is a
match.

Time complexity:

O(|p| + k), where k is
number of nodes in the
subtrie.

Problems

In the worst case, a suffix tree for s has 0(|s|?)

nodes.
Suffixes of length |s|, |s| -1, |s]| -2, ...,

So substring search can take ©(|s|?) time.

Construction therefore takes Q(|s|?), too.
Naive algorithm takes ©(|s|?) time.

Takes O(|s|?) storage.

Silly Nodes

A silly node has one
child.

Fix: “Collapse” silly
nodes?

n

a
s
3

®

R/ }Qca%

gg > ¢ b

®

“Collapsing

Silly Nodes

"bananas”
"ananas”
n n

nanas
"anas”
"naS"
"aS"

<. "g”
”n

e oo oo ss oo se e ee
e
.o ee oo oe ss ss oo

Suffix Trees

\@ This is a suffix tree?.
GY ;{/ éi \GD Internal nodes

represent branching

words.
é é &) Leaf nodes represent
suffixes.
n
Q
s Leafs are labeled by
(5 ED starting index of suffix.

Not to be confused with a
suffix trie.

Branching Words

Suppose s’ is a substring of s.

An extension of s’ is a substring of s of the form:

s’ + one more character

Example: s = "bananas”,

”n n

"ana” — {"anas”,”anan”

n_n n n

a” - {"an”,"as”
Ilban" - {”banall}

Branching Words

A branching word is a substring of s with more
than one extension.

Example: s = "bananas”,

”n n

"ana” - {"anas”,”anan”} (yes)

nn

a - {nann,nasn} (yes)
"ban” — {"bana”}(no)

%Ci\ Branching
ol R/ é{ \@\@ Words

a ana na” are
branchmg words in
"bananas”.

Internal nodes of the
suffix tree represent

:3
S
Q; é) branching words.

Number of Branching Words
There are O(|s|) branching words.

Proof:
Remove all of the internal nodes (branching words).

Now there are |s| forests (one for each suffix).
Add the internal nodes back, one at a time.

Each addition reduces number of forests by one.
After adding |s| - 1 internal nodes, forest has one

tree.
Therefore there are at most |s| - 1 internal nodes.

Size of Suffix Trees

A suffix tree for any string s has O(|s|) nodes.

/%\% Substring
e TN \@ Search
®/ % Given pattern p, walk

down suffix trie.

a S
$ If we fall off, return [].
é Else, do a DFS of that
subtree. Each leaf is a
n match.

Time complexity:
O(|p| + z), where z is
number of matches.

Naive Construction Algorithm

First, build a suffix trie in Q(|s|?) time in worst

case.
Loop through the |s| suffixes, insert each into trie.

Then “collapse” silly nodes.

Takes Q(|s|?) time. Bad.

Faster Construction

There are (surprisingly) O(]s|) algorithms for
constructing suffix trees.

For instance, Ukkonen’s Algorithm.

Single Substring Search

Rabin-Karp

Rolling hash of window.

O(|s| + |p]) time.

Suffix Tree

Construct suffix tree; 9(|s])
time.

Search it; ©(|p| + z) time.

Total: ©(]s] + |p]), since
z = 0(|s]).

Multiple Substring Search

Multiple searches of s with different patterns, p,, p,,

Rabin-Karp Suffix Tree

First search: O(|s| + |p,1). Construct suffix tree; O(|s|)
time.

Second search: O(|s| + |p,]).
First search: ©(|p,| + z;) time.

Second search: O(|p,| + z,)
time.

Typically z « |s|

Suffix Trees

Many other string problems can be solved
efficiently with suffix trees!

DSC /70

DATA STRUCTURES § ALELORITHMS
Lecture 16 @ Part 2

Longest Repeated Substring

Repeating Substrings

A substring of s is repeated if it occurs more
than once.

Example: s = "bananas”.
"na"
"ana"

Repeating Substrings in Genomics

A repeated substring in a DNA sequence is
interesting.

It's a “building block” of that gene.

GATTACAGTAGCGATGATTACAGGTGATTACA

Repeating Substrings in Genomics

A repeated substring in a DNA sequence is
interesting.

It's a “building block” of that gene.

GATTACAGTAGCGATGATTACAGGTGATTACA

Longest Repeated Substrings

The longer a repeated substring, the more
interesting.

Given: a string, s.

Find: a repeated substring with longest length.

Brute Force
Keep a dictionary of substring counts.
Loop a window of size 1 over s.
Loop a window of size 2 over s.
Loop a window of size 3 over s, etc.

0(]s|?) time.

Suffix Trees

We'll do this in ©(|s]|) time with a suffix tree.

Branching Words & Repeated
Substrings

Recall: a branching word is a substring with more
than one extension.

If a substring is repeated, is it necessarily a
branching word?

Branching Words & Repeated
Substrings

Recall: a branching word is a substring with more
than one extension.

If a substring is repeated, is it necessarily a
branching word?

No. Example: "barkbark”.
"bar” is repeated, not branching: {"bark"}.
"bark” is repeated, is branching:
{"barkb”, "bark$"}.

Claim

If a substring w is repeated but not a branching
word, it can’t be the longest.

Why? Since it isn’t branching, it has one
extension: w'.

w’ must also repeat, since w repeats.

w’ is longer than w, so w can’t be the longest.

Claim

Not all repeated substrings are branching words.

However, a longest repeated substring must be a
branching word.

The internal nodes of the suffix tree are branching words.

Claim: the longest repeated substring must be an internal
node of the suffix tree of s.

nos a s
% s
5{
a
s %
3

LRS

Build suffix tree in
O(]s]) time.

Do a DFS in ©(|s]) time.
Keep track of “deepest”

internal node. (Depth
determined by number

of characters.)

This is a longest
repeated substring;
found in ©(|s|) time.

