DST 190
Lecture $16 \mid$ Part 1
Suffix Tries and Suffix Trees

Last Time

- We have seen tries.
- They provide for very fast prefix searches.
- But we don't do a lot of prefix searches...

Today's Lecture

A way of using tries for solving much more interesting problems.

String Matching

(Substring Search)

- Given: a string, s, and a pattern string p
- Determine: all locations of p in s
- Example:

$$
s=\text { "GATTACATACG" } p=\text { "TAC" }
$$

Recall

- We've solved this with Rabin-Karp in $\Theta(|s|+|p|)$ expected time.
- What if we want to do many searches?
- Let's build a data structure for fast substring search.

Suffixes

- A suffix p of a string s is a contiguous slice of the form $s[t:]$, for some t.
- Examples:
> "ing" is a suffix of "testing"
" "ting" is a suffix of "testing"
$>$ "di" is not a suffix of "san diego"

A Very Important Observation

> w is a substring of s if and only if w is a prefix of some suffix of s.

$$
\begin{aligned}
& s=" c a l i f o r n i a " \\
& p _1=" i f o " \\
& \text { p_2 }=\text { "lif" } \\
& \text { p_3 }=\text { "flurb" }
\end{aligned}
$$

"california"
"alifornia"
"lifornia"
"ifornia"
"fornia"
"ornia"
"rnia"
"nia"
"ia"
"a"
""

Idea

- Last time: can do fast prefix search with trie.
- Idea for fast repeated substring search of s :
- Keep track track of all suffixes of s in a trie.
- Given a search pattern p, look up p in trie.
- A trie containing all suffixes of s is a suffix trie for s .

$$
\begin{aligned}
& \mathrm{s}[0:]: \text { "bananas" } \\
& \mathrm{s}[1:]: \text { "ananas" } \\
& \mathrm{s}[2:]: \text { "nanas" } \\
& \mathrm{s}[3:]: \text { "anas" } \\
& \mathrm{s}[4:]: \text { "nas" } \\
& \mathrm{s}[5:]: \text { "as" } \\
& \mathrm{s}[6:]: \text { "s" } \\
& \mathrm{s}[7:]: \text { "" }
\end{aligned}
$$

Substring Search

- Given pattern p, walk down suffix trie.
- If we fall off, return [].
- Else, do a DFS of that subtrie. Each leaf is a match.
- Time complexity: $\Theta(|p|+k)$, where k is number of nodes in the subtrie.

Problems

- In the worst case, a suffix tree for s has $\Theta\left(|s|^{2}\right)$ nodes.
> Suffixes of length $|s|,|s|-1,|s|-2, \ldots$,
- So substring search can take $\Theta\left(|s|^{2}\right)$ time.
- Construction therefore takes $\Omega\left(|s|^{2}\right)$, too.
- Naïve algorithm takes $\Theta\left(|s|^{2}\right)$ time.
- Takes $\Theta\left(|s|^{2}\right)$ storage.

Silly Nodes

- A silly node has one child.
- Fix: "Collapse" silly nodes?

"Collapsing" Silly Nodes

s[厄:]: "bananas"
s[1:]: "ananas"
s[2:]: "nanas"
s[3:]: "anas"
s[4:]: "nas"
s[5:]: "as"
s[6:]: "s"
s[7:]: ""

Suffix Trees

- This is a suffix tree ${ }^{a}$.
- Internal nodes represent branching words.
- Leaf nodes represent suffixes.
- Leafs are labeled by starting index of suffix.

[^0]
Branching Words

- Suppose s^{\prime} is a substring of s.
- An extension of s^{\prime} is a substring of s of the form:
$s^{\prime}+$ one more character
- Example: s = "bananas",
- "ana" \rightarrow \{"anas","anan"\}
- "a" \rightarrow \{"an","as"\}
- "ban" \rightarrow \{"bana" $\}$

Branching Words

A branching word is a substring of s with more than one extension.

- Example: s = "bananas",
- "ana" \rightarrow \{"anas", "anan" $\}$ (yes)
> "a" \rightarrow \{"an","as"\} (yes)
- "ban" \rightarrow \{"bana" $\}$ (no)

Branching Words

- "a", "ana", "na" are branching words in "bananas".
- Internal nodes of the suffix tree represent branching words.

Number of Branching Words

- There are $O(|s|)$ branching words.
- Proof:
- Remove all of the internal nodes (branching words).
- Now there are |s| forests (one for each suffix).
- Add the internal nodes back, one at a time.
- Each addition reduces number of forests by one.
- After adding $|s|-1$ internal nodes, forest has one tree.
- Therefore there are at most $|s|-1$ internal nodes.

Size of Suffix Trees

- A suffix tree for any string s has $\Theta(|s|)$ nodes.

Substring Search

- Given pattern p, walk down suffix trie.
- If we fall off, return [].
- Else, do a DFS of that subtree. Each leaf is a match.
- Time complexity: $\Theta(|p|+z)$, where z is number of matches.

Naïve Construction Algorithm

- First, build a suffix trie in $\Omega\left(|s|^{2}\right)$ time in worst case.
- Loop through the $|s|$ suffixes, insert each into trie.
- Then "collapse" silly nodes.
- Takes $\Omega\left(|s|^{2}\right)$ time. Bad.

Faster Construction

- There are (surprisingly) O (|s|) algorithms for constructing suffix trees.
- For instance, Ukkonen's Algorithm.

Single Substring Search

Rabin-Karp

- Rolling hash of window.
> $\Theta(|s|+|p|)$ time.

Suffix Tree

- Construct suffix tree; $\Theta(|s|)$ time.
$>$ Search it; $\Theta(|p|+z)$ time.
- Total: $\Theta(|s|+|p|)$, since $z=O(|s|)$.

Multiple Substring Search

Multiple searches of s with different patterns, p_{1}, p_{2},

Rabin-Karp

$>$ First search: $\Theta\left(|s|+\left|p_{1}\right|\right)$.
> Second search: $\Theta\left(|s|+\left|p_{2}\right|\right)$.

Suffix Tree

- Construct suffix tree; $\Theta(|s|)$ time.
\Rightarrow First search: $\Theta\left(\left|p_{1}\right|+z_{1}\right)$ time.
- Second search: $\Theta\left(\left|p_{2}\right|+z_{2}\right)$ time.
$>$ Typically $z \ll|s|$

Suffix Trees

Many other string problems can be solved efficiently with suffix trees!

DSC 190 Lecture $16 \mid$ Part 2 ongest Repeated Substring

Repeating Substrings

- A substring of s is repeated if it occurs more than once.
- Example: s = "bananas".
> n a"
"ana"

Repeating Substrings in Genomics

- A repeated substring in a DNA sequence is interesting.
- It's a "building block" of that gene.

> GATTACAGTAGCGATGATTACAGGTGATTACA

Repeating Substrings in Genomics

- A repeated substring in a DNA sequence is interesting.
> It's a "building block" of that gene.

GATTACAGTAGCGATGATTACAGGTGATTACA

Longest Repeated Substrings

- The longer a repeated substring, the more interesting.
- Given: a string, s.
- Find: a repeated substring with longest length.

Brute Force

- Keep a dictionary of substring counts.
- Loop a window of size 1 over s.
- Loop a window of size 2 over s.
- Loop a window of size 3 over s, etc.
- $\Theta\left(|s|^{2}\right)$ time.

Suffix Trees

We'll do this in $\Theta(|s|)$ time with a suffix tree.

Branching Words \& Repeated Substrings

- Recall: a branching word is a substring with more than one extension.
- If a substring is repeated, is it necessarily a branching word?

Branching Words \& Repeated Substrings

- Recall: a branching word is a substring with more than one extension.
- If a substring is repeated, is it necessarily a branching word?
- No. Example: "barkbark".
- "bar" is repeated, not branching: \{"bark"\}.
- "bark" is repeated, is branching: \{"barkb","bark\$"\}.

Claim

- If a substring w is repeated but not a branching word, it can't be the longest.
- Why? Since it isn't branching, it has one extension: w^{\prime}.
- w' must also repeat, since w repeats.
- w^{\prime} is longer than w, so w can't be the longest.

Claim

- Not all repeated substrings are branching words.
- However, a longest repeated substring must be a branching word.
- The internal nodes of the suffix tree are branching words.
- Claim: the longest repeated substring must be an internal node of the suffix tree of s.

LRS

- Build suffix tree in $\Theta(|s|)$ time.
- Do a DFS in $\Theta(|s|)$ time.
- Keep track of "deepest" internal node. (Depth determined by number of characters.)
- This is a longest repeated substring; found in $\Theta(|s|)$ time.

[^0]: ${ }^{a}$ Not to be confused with a suffix trie.

