

Lecture 16 | Part 1

Suffix Tries and Suffix Trees

Last Time

- We have seen tries.
- They provide for very fast prefix searches.
- But we don't do a lot of prefix searches...

Today's Lecture

A way of using tries for solving much more interesting problems.

String Matching (Substring Search)

Given: a string, s, and a pattern string p

- Determine: all locations of p in s
- Example:

Recall

- We've solved this with Rabin-Karp in Θ(|s| + |p|) expected time.
- What if we want to do many searches?
- Let's build a data structure for fast substring search.

Suffixes

- A suffix p of a string s is a contiguous slice of the form s[t:], for some t.
- Examples:
 - "ing" is a suffix of "testing"
 - "ting" is a suffix of "testing"
 - "di" is not a suffix of "san diego"

A Very Important Observation

- w is a substring of s if and only if w is a prefix of some suffix of s.
 - s = "california"
 p_1 = "ifo"
 p_2 = "lif"
 p_3 = "flurb"

```
"california"
"alifornia"
"lifornia"
"ifornia"
"fornia"
"ornia"
"rnia"
"nia"
"ia"
"a"
** **
```

Idea

Last time: can do fast prefix search with trie.

- Idea for fast repeated substring search of s:
 Keep track track of all suffixes of s in a trie.
 Given a search pattern p, look up p in trie.
- A trie containing all suffixes of s is a suffix trie for s.

Substring Search

- Given pattern p, walk down suffix trie.
- ▶ If we fall off, return [].
- Else, do a DFS of that subtrie. Each leaf is a match.
- Time complexity:
 Θ(|p| + k), where k is number of nodes in the subtrie.

Problems

- In the worst case, a suffix tree for s has Θ(|s|²) nodes.
 - ► Suffixes of length |s|, |s| 1, |s| 2, ...,
- So substring search can take $\Theta(|s|^2)$ time.
- Construction therefore takes Ω(|s|²), too.
 Naïve algorithm takes Θ(|s|²) time.
- ► Takes $\Theta(|s|^2)$ storage.

Silly Nodes

- A silly node has one child.
- Fix: "Collapse" silly nodes?

"Collapsing" Silly Nodes

s[⊙:]:	"bananas"
s[1:]:	"ananas"
s[2:]:	"nanas"
s[3:]:	"anas"
s[4:]:	"nas"
s[5:]:	"as"
s[6:]:	"s"
s[7:]:	<i>""</i>

Suffix Trees

- ▶ This is a **suffix tree**^{*a*}.
- Internal nodes represent branching words.
- Leaf nodes represent suffixes.
- Leafs are labeled by starting index of suffix.

^{*a*}Not to be confused with a **suffix trie**.

Branching Words

- Suppose s' is a substring of s.
- An **extension** of s' is a substring of s of the form:

s' + one more character

Branching Words

- A branching word is a substring of s with more than one extension.
- Example: s = "bananas",
 "ana" → {"anas", "anan"} (yes)
 "a" → {"an", "as"} (yes)
 "ban" → {"bana"} (no)

Branching Words

- "a", "ana", "na" are branching words in "bananas".
- Internal nodes of the suffix tree represent branching words.

Number of Branching Words

There are O(|s|) branching words.

Proof:

- Remove all of the internal nodes (branching words).
- Now there are |s| forests (one for each suffix).
- Add the internal nodes back, one at a time.
- Each addition reduces number of forests by one.
- After adding |s| 1 internal nodes, forest has one tree.
- ► Therefore there are at most |s| 1 internal nodes.

Size of Suffix Trees

A suffix tree for any string s has $\Theta(|s|)$ nodes.

Substring Search

- Given pattern *p*, walk down suffix trie.
- If we fall off, return [].
- Else, do a DFS of that subtree. Each leaf is a match.
- Time complexity:
 Θ(|p| + z), where z is number of matches.

Naïve Construction Algorithm

First, build a suffix trie in Ω(|s|²) time in worst case.

Loop through the |s| suffixes, insert each into trie.

- Then "collapse" silly nodes.
- Takes $\Omega(|s|^2)$ time. **Bad**.

Faster Construction

- There are (surprisingly) O(|s|) algorithms for constructing suffix trees.
- For instance, Ukkonen's Algorithm.

Single Substring Search

Rabin-Karp

- Rolling hash of window.
- ► $\Theta(|s| + |p|)$ time.

Suffix Tree

- Construct suffix tree; Θ(|s|) time.
- Search it; $\Theta(|p| + z)$ time.
- Total: Θ(|s| + |p|), since z = O(|s|).

Multiple Substring Search

Multiple searches of s with different patterns, p_1 , p_2 ,

Rabin-Karp

...

- First search: $\Theta(|s| + |p_1|)$.
- Second search: $\Theta(|s| + |p_2|)$.

Suffix Tree

- Construct suffix tree; Θ(|s|) time.
- First search: $\Theta(|p_1| + z_1)$ time.
- Second search: $\Theta(|p_2| + z_2)$ time.
- ► Typically z ≪ |s|

Suffix Trees

Many other string problems can be solved efficiently with suffix trees!

Lecture 16 | Part 2

Longest Repeated Substring

Repeating Substrings

- A substring of s is repeated if it occurs more than once.

Repeating Substrings in Genomics

- A repeated substring in a DNA sequence is interesting.
- It's a "building block" of that gene.

GATTACAGTAGCGATGATTACAGGTGATTACA

Repeating Substrings in Genomics

- A repeated substring in a DNA sequence is interesting.
- It's a "building block" of that gene.

GATTACAGTAGCGATGATTACAGGTGATTACA

Longest Repeated Substrings

- The longer a repeated substring, the more interesting.
- **Given**: a string, s.
- **Find**: a repeated substring with longest length.

Brute Force

- Keep a dictionary of substring counts.
- Loop a window of size 1 over s.
- Loop a window of size 2 over s.
- Loop a window of size 3 over s, etc.
- ► Θ(|s|²) time.

Suffix Trees

• We'll do this in $\Theta(|s|)$ time with a suffix tree.

Branching Words & Repeated Substrings

- Recall: a branching word is a substring with more than one extension.
- If a substring is repeated, is it necessarily a branching word?

Branching Words & Repeated Substrings

- Recall: a branching word is a substring with more than one extension.
- If a substring is repeated, is it necessarily a branching word?
- **No**. Example: "barkbark".
 - "bar" is repeated, not branching: {"bark"}.
 - "bark" is repeated, is branching: {"barkb", "bark\$"}.

Claim

If a substring w is repeated but not a branching word, it can't be the **longest**.

Why? Since it isn't branching, it has one extension: w'.

▶ w' must also repeat, since w repeats.

▶ w' is longer than w, so w can't be the longest.

Claim

- Not all repeated substrings are branching words.
- However, a longest repeated substring must be a branching word.
- ► The internal nodes of the suffix tree are branching words.
- Claim: the longest repeated substring must be an internal node of the suffix tree of s.

LRS

- Build suffix tree in Θ(|s|) time.
- Do a DFS in $\Theta(|s|)$ time.
- Keep track of "deepest" internal node. (Depth determined by number of characters.)
- This is a longest repeated substring; found in O(|s|) time.