DSC 190 Lecture 14 | Part 1
String Matching

Today's Problem

- Is a needle in a haystack?
- That is, where does the small string p occur in the large string s?

Strings

- An alphabet is a set of possible characters.

$$
\Sigma=\{G, A, T, C\}
$$

- A string is a sequence of characters from the alphabet.

> "GATTACATACGAT"

Example: Bitstrings

$$
\Sigma=\{0,1\}
$$

"0110010110"

Example: Text (Latin Alphabet)

$\Sigma=\{\mathrm{a}, \ldots, \mathrm{z},\langle$ space $>\}$
"this is a string"

Comparing Strings

- Suppose s and t are two strings of equal length, m.
- Checking for equality takes worst-case time $\Theta(m)$ time.

```
def strings_equal(s, t):
    if len(s) != len(t):
        return False
    for i in range(len(s)):
        if s[i] != t[i]:
            return False
    return True
```


String Matching

(Substring Search)

- Given: a string, s, and a pattern string p
- Determine: all locations of p in s
- Example:

$$
s=\text { "GATTACATACG" } p=\text { "TAC" }
$$

Naïve Algorithm

Idea: "slide" pattern p across s, check for equality at each location.

Naïve Algorithm

- Idea: "slide" pattern p across s, check for equality at each location.

$$
\begin{aligned}
& s=\quad G \quad A \quad T \quad T \quad A \quad C \quad A \quad T \quad A \quad C \\
& p=\quad \text { T A C }
\end{aligned}
$$

Naïve Algorithm

- Idea: "slide" pattern p across s, check for equality at each location.

$$
\begin{aligned}
& s=\quad G \quad A \quad T \quad T \quad A \quad C \quad A \quad T \quad A \quad C \\
& \mathrm{p}= \\
& \text { T A C }
\end{aligned}
$$

Naïve Algorithm

- Idea: "slide" pattern p across s, check for equality at each location.

Naïve Algorithm

Idea: "slide" pattern p across s, check for equality at each location.

$$
\begin{array}{llllllllllll}
\mathrm{s} & = & \mathrm{G} & \mathrm{~A} & \mathrm{~T} & \mathrm{~T} & \mathrm{~A} & \mathrm{C} & \mathrm{~A} & \mathrm{~T} & \mathrm{~A} & \mathrm{C} \\
\mathrm{p} & = & & & & & & \mid & \mid & \mid & & \\
& & & & & & & & & & & \\
& & & & & & & & & & &
\end{array}
$$

Naïve Algorithm

- Idea: "slide" pattern p across s, check for equality at each location.

$$
\begin{array}{llllllllllll}
\mathrm{s} & = & \mathrm{G} & \mathrm{~A} & \mathrm{~T} & \mathrm{~T} & \mathrm{~A} & \mathrm{C} & \mathrm{~A} & \mathrm{~T} & \mathrm{~A} & \mathrm{C} \\
\mathrm{p}= & & & & & \mid & \mid & \mid & & \\
& & & & & & \mathrm{T} & \mathrm{~A} & & & &
\end{array}
$$

Naïve Algorithm
Idea: "slide" pattern p across s, check for equality at each location.

$$
\begin{aligned}
& s=\quad G \quad A \quad T \quad T \quad A \quad C \\
& \mathrm{p}= \\
& \text { A }
\end{aligned}
$$

Naïve Algorithm

- Idea: "slide" pattern p across s, check for equality at each location.

match!

Exercise

Exactly how many sliding windows are checked, as a formula involving $|s|$ and $|p|$?

Naïve Algorithm

```
def naive_string_match(s, p):
match_locations = []
for i in range(len(s) - len(p) + 1):
    window = s[i:i+len(p)]
    if window == p:
        match_locations.append(i)
    return match_locations
```


Time Complexity

```
def naive_string_match(s, p):
match_locations = []
for i in range(len(s) - len(p) + 1):
    window = s[i:i+len(p)]
    if window == p:
        match_locations.append(i)
    return match_locations
```


Naïve Algorithm

- Worst case: $\Theta((|s|-|p|+1) \times|p|)$ time 1
- Can we do better?
${ }^{1}$ The +1 is actually important, since if $|p|=|s|$ this should be $\Theta(p)$

Yes!

- There are numerous ways to do better.
- We'll look at one: Rabin-Karp.
- Under some assumptions, takes $\Theta(|s|+|p|)$ expected time.
- Not always the fastest, but easy to implement, and generalizes to other problems.

DSC 190 Lecture 14 | Part
Rabin-Karp

Idea

- The naïve algorithm performs (potentially many) comparisons of strings of length $|p|$.
- String comparison is slow: $O(|p|)$ time.
- Integer comparison is fast: $\Theta(1)$ time 2.
> Idea: hash strings into integers, compare hashes.
${ }^{2}$ As long as the integers are "not too big"

Recall: Hash Functions

- A hash function takes in an object and returns a (small) number.
- Important: Given the same object, returns same number.
- It may be possible for two different objects to hash to same number. This is a collision.

String Hashing

- A string hash function takes a string, returns a number.
- Given same string, returns same number.

```
"> string_hash("testing")
32
"> string_hash("something else")
7
>> string_hash("testing")
32
```


Idea

- Slide a "window" across s, like before.
- But don't compare window to p directly!
- Instead, compare hash of window to hash of p .
- If unequal, then no match.
- If equal, then possible match, perform full string comparison to verify.

Example

$$
\begin{aligned}
& \text { hash }=12 \\
& \mathrm{~s}=\begin{array}{|lllll}
\mathrm{G} & \mathrm{~A} & \mathrm{~T}
\end{array} \mathrm{~T} \quad \mathrm{~A} \\
& \mathrm{~T}
\end{aligned} \mathrm{~A} \quad \mathrm{~T} \quad \mathrm{~A} \quad \mathrm{C}, ~ \begin{array}{lll}
\mathrm{T} & \mathrm{~A} & \mathrm{C} \\
\text { hash }=11
\end{array}
$$

Example

$$
\begin{aligned}
& \text { hash =8 } \\
& p=\begin{array}{llllll}
\hline A & T & T
\end{array} \quad C \quad A \quad T \quad A \quad C \\
& \begin{array}{lll}
\hline \begin{array}{lll}
T & A & C \\
\text { hash }=11
\end{array}
\end{array}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { hash }=11 \\
& \mathrm{~s}= \mathrm{G} \quad \mathrm{~A} \begin{array}{|ccc}
\mathrm{T} & \mathrm{~T} & \mathrm{~A} \\
\mathrm{~T}
\end{array} \mathrm{C} \quad \mathrm{~A} \quad \mathrm{~T} \quad \mathrm{~A} \quad \mathrm{C} \\
& \begin{array}{lll}
\mathrm{T} & \mathrm{~A} & \mathrm{C} \\
\text { hash }=11
\end{array} \\
& \text { spurious (fake) match! }
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { hash }=11 \\
& S=\quad G \quad A \quad T \quad T \quad A \quad C \quad A \quad T \quad A \quad C \\
& \mathrm{p}= \\
& \begin{array}{lll}
\mathrm{T} & \mathrm{~A} & \mathrm{C} \\
\hline
\end{array} \\
& \text { hash }=11
\end{aligned}
$$

match!

Example

$$
\begin{aligned}
& \text { hash }=9 \\
& s=\quad G \quad A \quad T \quad T \quad A \quad C \quad A \quad T \quad A \quad C \\
& \mathrm{p}= \\
& \text { T A C } \\
& \text { hash = } 11
\end{aligned}
$$

Example

$$
\begin{gathered}
\mathrm{s}= \\
\mathrm{p}= \\
\mathrm{G}
\end{gathered} \mathrm{~A} \quad \mathrm{~T} \quad \mathrm{~T} \quad \mathrm{~A} \begin{array}{|c}
\begin{array}{|lll}
\mathrm{C} & \mathrm{~A} & \mathrm{~T}
\end{array} \mathrm{~A} \\
\hline \begin{array}{lll}
\mathrm{T} & \mathrm{~A} & \mathrm{C} \\
\text { hash }=11
\end{array}
\end{array}
$$

Example

$$
\begin{array}{llllll}
\text { hash }=7 \\
\mathrm{~s}= & \mathrm{G} & \mathrm{~A} & \mathrm{~T} & \mathrm{~T} & \mathrm{~A} \\
\mathrm{p}= & \mathrm{C} & \begin{array}{|cc|}
\hline A & \mathrm{~T}
\end{array} \mathrm{~A} \\
\mathrm{C}
\end{array} \mathrm{C} \begin{array}{|lll}
\mathrm{T} & \mathrm{~A} & \mathrm{C} \\
\text { hash }=11
\end{array}
$$

Example

match!

Pseudocode

```
def string_match_with_hashing(s, p):
    match_locations = []
    for i in range(len(s) - len(p) + 1):
        if string_hash(s[i:i+len(p)]) == string_hash(p):
            # make sure this isn't a spurious match due to collision
            if s[i:i+len(p)] == p:
                        match_locations.append(i)
    return match_locations
```


Exercise

What is the time complexity of this approach, as-

 suming that there is at most one match?```
def string_match_with_hashing(s, p):
 match_locations = []
 for i in range(len(s) - len(p) + 1):
 if string_hash(s[i:i+len(p)]) == string_hash(p):
 # make sure this isn't a spurious match due to collision
 if s[i:i+len(p)] == p:
 match_locations.append(i)
 return match_locations
```


## Time Complexity of Hashing

- Often, we assume hashing takes constant time with respect to the input size.
- But now, we'll be more careful.
- Hashing a string $p$ takes $\Theta(|p|)$ time.


## Time Complexity

- Comparing (small) integers takes $\Theta(1)$ time.
- But hashing a string $p$ takes $\Theta(|p|)$.
- In this case, overall:

$$
\Omega((|s|+|p|+1) \cdot|p|)
$$

- No better than naïve!


## Idea: Rolling Hashes

- We have hashed each window from scratch.
- But the strings we are hashing change only a little bit.
- Example: $s=$ "ozymandias", $\mathrm{p}=$ "mandi".
- What if, instead of computing hash from scratch, we could "update" the old hash?

```
"> old_hash = rolling_hash("ozymandias", start=0, stop=5)
"> new_hash = rolling_hash("ozymandias", start=1, stop=6, from=old_hash)
```


## Rabin-Karp

- This is the idea behing the Rabin-Karp string matching algorithm.
- We'll design a special rolling hash function.
- Instead of computing hash "from scratch", it will "update" old hash in $\Theta(1)$ time.

```
def rabin_karp(s, p):
 hashed_window = string_hash(s, 0, len(p))
 hashed_pattern = string_hash(p, \odot, len(p))
 match_locations = []
 if s[\odot:len(p)] == p:
 match_locations.append(\odot)
 for i in range(1, len(s) - len(p) + 1):
 # update the hash
 hashed_window = update_string_hash(s, i, i + len(p), hashed_window)
 if hashed_window == hashed_pattern:
 # make sure this isn't a false match due to collision
 if s[i:i + len(p)] == p:
 match_locations.append(i)
 return match_locations
```


## Time Complexity

> $\Theta(|p|)$ time to hash pattern.

- $\Theta(1)$ to update window hash, done $\Theta(|s|-|p|+1)$ times.
- For each collision, $\Theta(|p|)$ time to check.
- If there are $k$ collisions:



## $\Theta(\underbrace{|p|}_{\text {hash pattern }}+\underbrace{|s|-|p|+1}_{\text {update window hashes }}+\underbrace{k \cdot|p|}_{\text {check collisions }})$

## Exercise

What is the worst case situation for Rabin-Karp?

## Worst Case

- In worst case, every position results in a collision.
- That is, there are $\Theta(|s|)$ collisions:
$\Theta(\underbrace{|p|}_{\text {hash pattern }}+\underbrace{|s|-|p|+1}_{\text {update windows }}+\underbrace{|s| \cdot|p|}_{\text {check collisions }}) \quad \rightarrow \quad \Theta(|s| \cdot|p|)$
- Example: s = "aaaaaaaaa", p = "aaa"
- This is just as bad as naïve!


## More Realistic Time Complexity

- Typicall, there are only a few valid matches and a few spurious matches.
- Number of collisions depends on hash function.
- Our hash function will reasonably have $\Theta(|s| /|p|)$ collisions.
$\Theta(\underbrace{|p|}_{\text {hash pattern }}+\underbrace{|s|-|p|+1}_{\text {update windows }}+\underbrace{c \cdot|p|}_{\text {check collisions }}) \quad \rightarrow \quad \Theta(|s|)$

DSC 190 Lecture 14 | Part 3

## The Problem

- We need to hash:

```
s s[0:0 + len(p)]
> s[1:1 + len(p)]
> s[2:2 + len(p)]
```

- A standard hash function takes $\Theta(|p|)$ time per call.
- But these strings overlap. Maybe we can save work?
- Goal: Design hash function that takes $\Theta(1)$ time to "update" the hash.


## Strings as Numbers

- Our hash function should take a string, return a number.
- Should be unlikely that two different strings have same hash.
$>$ Idea: treat each character as a digit in a base- $|\Sigma|$ expansion.


## Digression: Decimal Number System

- In the standard decimal (base-10) number system, each digit ranges from 0-9, represents a power of 10 .
- Example:

$$
1532_{10}=\left(1 \times 10^{3}\right)+\left(5 \times 10^{2}\right)+\left(3 \times 10^{1}\right)+\left(2 \times 10^{0}\right)
$$

## Digression: Binary Number System

- Computers use binary (base-2). Each digit ranges from 0-1, represents a power of 2.
- Example:

$$
\begin{aligned}
10110_{2} & =\left(1 \times 2^{4}\right)+\left(0 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(0 \times 2^{0}\right) \\
& =22_{10}
\end{aligned}
$$

## Digression: Base-256

- We can use whatever base is convenient. For instance, base-128, in which each digit ranges from 0-127, represents a power of 128.

$$
\begin{aligned}
12,97,199_{128} & =\left(12 \times 128^{2}\right)+\left(97 \times 128^{1}\right)+\left(101 \times 128^{0}\right) \\
& =20912510
\end{aligned}
$$

## What does thiṣ have to do with strings?

- We can interpret a character in alphabet $\Sigma$ as a digit value in base $|\Sigma|$.
- For example, suppose $\Sigma=\{a, b\}$.
- Interpret a as 0, b as 1.
- Interpret string "babba" as binary string $10110_{2}$.
$\Rightarrow$ In decimal: $10110_{2}=22_{10}$


## Main Idea

We have mapped the string "babba" to an integer: 22. In fact, this is the only string over $\Sigma$ that maps to 22. Interpreting a string of a and bas a binary number hashes the string!

## General Strings

- What about general strings, like "I am a string."?
- Choose some encoding of characters to numbers.
- Popular (if outdated) encoding: ASCII.
- Maps Latin characters, more, to 0-127. So $|\Sigma|=128$.


## ASCII TABLE

| Decimal | Hexadecimal | nary | ctal | Char | Decimal | Hexadecimal | Binary | octal | Char | Decimal | Hexadecimal | Binary |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | [ MULL] | 48 | 30 | 110000 | 60 | 0 | 96 | 60 | 1100000 | 140 |  |
| 1 | 1 | 1 | 1 | [START OF HEADING] | 49 | 31 | 110001 | 61 | 1 | 97 | 61 | 1100001 | 141 | a |
| 2 | 2 | 10 | 2 | [START OF TEXT] | 50 | 32 | 110010 | 62 | 2 | 98 | 62 | 1100010 | 142 | b |
| 3 | 3 | 11 | 3 | [END OF TEXT] | 51 | 33 | 110011 | 63 | 3 | 99 | 63 | 1100011 | 143 | c |
| 4 | 4 | 100 | 4 | [END Of TRANSMISSION] | 52 | 34 | 110100 | 64 | 4 | 100 | 64 | 1100100 | 144 | d |
| 5 | 5 | 101 | 5 | [ENQURY] | 53 | 35 | 110101 | 65 | 5 | 101 | 65 | 1100101 | 145 | e |
| 6 | 6 | 110 | 6 | [ACKNOWLEDGE] | 54 | 36 | 110110 | 66 | 6 | 102 | 66 | 1100110 | 146 | $f$ |
| 7 | 7 | 111 | 7 | [BEL] | 55 | 37 | 110111 | 67 | 7 | 103 | 67 | 1100111 | 147 | g |
| 8 | 8 | 1000 | 10 | [BACKSPACE] | 56 | 38 | 111000 | 70 | 8 | 104 | 68 | 1101000 | 150 | h |
| 9 | 9 | 1001 | 11 | [HoRizontal tab] | 57 | 39 | 111001 | 71 | 9 | 105 | 69 | 1101001 | 151 | 1 |
| 10 | A | 1010 | 12 | [LME FEED] | 58 | 3 A | 111010 | 72 | : | 106 | 6 A | 1101010 |  |  |
| 11 | B | 1011 | 13 | [VERTICAL TAB] | 59 | 3B | 111011 | 73 | ; | 107 | 6 B | 1101011 | 153 | k |
| 12 | c | 1100 | 14 | [FORM FEED] | 60 | 3 C | 111100 | 74 | < | 108 | 6 C | 1101100 | 154 | 1 |
| 13 | D | 1101 | 15 | [CARRIAGE RETURN] | 61 | 3 D | 111101 | 75 | $=$ | 109 | 6 D | 1101101 | 155 | m |
| 14 | E | 1110 | 16 | [SHilf OuT] | 62 | 3 E | 111110 | 76 | > | 110 | 6 E | 1101110 |  | n |
| 15 | F | 1111 | 17 | [SHIIFT IN] | 63 | 3 F | 111111 | 77 | ? | 111 | 6 F | 1101111 | 157 | - |
| 16 | 10 | 10000 | 20 | [DATA LINK ESCAPE] | 64 | 40 | 1000000 | 100 | @ | 112 | 70 | 1110000 | 160 | p |
| 17 | 11 | 10001 | 21 | [DEVICE CONTROL 1] | 65 | 41 | 1000001 | 101 | A | 113 | 71 | 1110001 | 161 | q |
| 18 | 12 | 10010 | 22 | [DEVICE CONTROL 2] | 66 | 42 | 1000010 | 102 | B | 114 | 72 | 1110010 | 162 | r |
| 19 | 13 | 10011 | 23 | [DEVICE CONTROL 3] | 67 | 43 | 1000011 |  | C | 115 | 73 | 1110011 |  | $s$ |
| 20 | 14 | 10100 | 24 | [DEVICE COMTROL 4] | 68 | 44 | 1000100 |  | D | 116 | 74 | 1110100 | 164 | $t$ |
| 21 | 15 | 10101 | 25 | [ [JEGATVE ACKNOWLEDGE) | 69 | 45 | 1000101 | 105 | E | 117 | 75 | 1110101 | 165 | u |
| 22 | 16 | 10110 | 26 | [SYMCHRONOUS IDLE] | 70 | 46 | 1000110 |  | F | 118 | 76 | 1110110 |  | $v$ |
| 23 | 17 | 10111 | 27 | [ENG OF TRANS. BLOCK] | 71 | 47 | 1000111 | 107 | G | 119 | 77 | 1110111 |  | w |
| 24 | 18 | 11000 | 30 | [CANCEL] | 72 | 48 | 1001000 | 110 | H | 120 | 78 | 1111000 | 170 | x |
| 25 | 19 | 11001 | 31 | [END OF MEDIUM] | 73 | 49 | 1001001 | 111 | I | 121 | 79 | 1111001 | 171 | y |
| 26 | 1 A | 11010 | 32 | [SUBStitute] | 74 | 4 A | 1001010 |  | J | 122 | 7 A | 1111010 |  | z |
| 27 | 18 | 11011 | 33 | [ESCAPE] | 75 | 4B | 1001011 | 113 | K | 123 | 78 | 1111011 | 173 | , |
| 28 | 1 C | 11100 | 34 | [FLLE SEPARATOR] | 76 | 4 C | 1001100 |  | L | 124 | 7 C | 1111100 |  |  |
| 29 | 10 | 11101 | 35 | [GROUP SEPARATOR] | 77 | 4D | 1001101 | 115 | M | 125 | 7 D | 1111101 | 175 | , |
| 30 | 1 E | 11110 | 36 | [RECORO SEPARATOR] | 78 | 4 E | 1001110 |  | N | 126 | 7 E | 1111110 |  |  |
| 31 | 1 F | 11111 | 37 | [UNIT SEPARATOR] | 79 | 4 F | 1001111 | 117 | - | 127 | 7 F | 1111111 |  | [DEL) |
| 32 | 20 | 100000 | 40 | [SPACE] | 80 | 50 | 1010000 |  | P |  |  |  |  |  |
| 33 | 21 | 100001 | 41 | 1 | 81 | 51 | 1010001 | 121 | Q |  |  |  |  |  |
| 34 | 22 | 100010 | 42 | " | 82 | 52 | 1010010 |  | R |  |  |  |  |  |
| 35 | 23 | 100011 | 43 | \# | 83 | 53 | 1010011 |  | s |  |  |  |  |  |
| 36 | 24 | 100100 | 44 | \$ | 84 | 54 | 1010100 |  | T |  |  |  |  |  |
| 37 | 25 | 100101 | 45 | \% | 85 | 55 | 1010101 |  | u |  |  |  |  |  |
| 38 | 26 | 100110 | 46 | \& | 86 | 56 | 1010110 | 126 | $v$ |  |  |  |  |  |
| 39 | 27 | 100111 | 47 |  | 87 | 57 | 1010111 |  | w |  |  |  |  |  |
| 40 | 28 | 101000 | 50 | 1 | 88 | 58 | 1011000 | 130 | x |  |  |  |  |  |
| 41 | 29 | 101001 | 51 | ) | 89 | 59 | 1011001 | 131 | r |  |  |  |  |  |
| 42 | 2 A | 101010 | 52 | * | 90 | 5 A | 1011010 | 132 | z |  |  |  |  |  |
| 43 | 2 B | 101011 | 53 | + | 91 | 5B | 1011011 |  | [ |  |  |  |  |  |
| 44 | 2 C | 101100 | 54 | , | 92 | 5 C | 1011100 | 134 |  |  |  |  |  |  |
| 45 | 2 D | 101101 | 55 | - | 93 | 5 D | 1011101 | 135 | ] |  |  |  |  |  |
| 46 | 2 E | 101110 | 56 |  | 94 | SE | 1011110 | 136 | - |  |  |  |  |  |
| 47 | 2 F | 101111 | 57 | 1 | 95 | 5 F | 1011111 | 137 | - |  |  |  |  |  |

## In Python

$$
\begin{aligned}
& »>\operatorname{ord}\left('^{\prime}\right) \\
& 97 \\
& \ggg \operatorname{ord}\left('^{\prime} Z^{\prime}\right) \\
& 90 \\
& \gg \\
& 33
\end{aligned}
$$

## ASCII as Base-128

- Each character represents a number in range 0-127.
$\downarrow$ A string is a number represented in base-128.
- Example:

$$
\begin{aligned}
& \text { Hello }{ }_{128} \\
& \begin{aligned}
= & \left(72 \times 128^{4}\right) \\
& +\left(101 \times 128^{3}\right) \\
& +\left(108 \times 128^{2}\right) \\
& +\left(108 \times 128^{1}\right) \\
& +\left(111 \times 128^{0}\right) \\
= & 19540948591_{10}
\end{aligned}
\end{aligned}
$$

| character | ASCII code |
| :---: | :---: |
| H | 72 |
| e | 101 |
| l | 108 |
| O | 111 |

```
def base_128_hash(s, start, stop):
 """Hash s[start:stop] by interpreting as ASCII base 128"""
 # this is only pseudo-code!
 p = 0
 total = 0
 while stop > start:
 total += ord(s[stop-1]) * 128**p # <-- : 0
 p += 1
 stop -= 1
 return total
```


## Rolling Hashes

- We can hash a string $x$ by interpreting it as a number in a different base number system.
- But hashing takes time $\Theta(|x|)$.
- With rolling hashes, it will take time $\Theta(1)$ to "update".


## character ASCII code

## Example

| H | 72 |
| :---: | :---: |
| e | 101 |
| l | 108 |
| o | 111 |

Hash of "Hel" in "Hello"

## "Updating" a Rolling Hash

- Start with old hash, subtract character to be removed.
- "Shift" by multiplying by 128.
- Add new character.
> Takes $\Theta(1)$ time.

```
def update_base_128_hash(s, start, stop, old):
 # assumes ASCII encoding, base 128
 length = stop - start
 removed_char = ord(s[start - 1]) * 128**(length - 1)
 added_char = ord(s[stop - 1])
 return (old - removed_char) * 128 + added_char
```

»> base_128_hash("Hello", 0, 3)
1192684
"> base_128_hash("Hello", 1, 4)
1668716
»> update_base_128_hash("Hello", 1, 4, 1192684)
1668716

## Note

- In this hashing strategy, there are no collisions!
- Two different string have two different hashes.
- But as we'll see... it isn't practical.


## Rabin-Karp

```
def rabin_karp(s, p):
 hashed_window = base_128_hash(s, 0, len(p), q)
 hashed_pattern = base_128_hash(p, \odot, len(p), q)
 match_locations = []
 if s[0:len(p)] == p:
 match_locations.append(`)
 for i in range(1, len(s) - len(p) + 1):
 # update the hash
 hashed_window = update_base_128_hash(s, i, i + len(p), hashed_window)
 # hashes are unique; no collisions
 if hashed_window == hashed_pattern:
 match_locations.append(i)
 return match_locations
```


## Example

$\begin{aligned} s & =\text { "this is a test", } \\ p & =\text { "is" }\end{aligned}$
hashed_pattern = 13555

| $i$ | s[...] | hashed_window |
| ---: | ---: | ---: |
| 0 | $" t h "$ | 14952 |
| 1 | $" h i "$ | 13417 |
| 2 | $" i s "$ | 13555 |
| 3 | $" s$ | 14752 |
| 4 | $" \mathrm{i} "$ | 4201 |
| 5 | $" i s "$ | 13555 |
| 6 | $" s$ | 14752 |
| 7 | $" \mathrm{a} "$ | 4193 |
| 8 | $" \mathrm{a} "$ | 12448 |
| 9 | $" \mathrm{t} "$ | 4212 |
| 10 | "te" | 14949 |
| 11 | "es" | 13043 |
| 12 | "st" | 14836 |

## Large Numbers

- We're hashing because integer comparison takes $\Theta(1)$ time.
- But this is only true if integers are small enough.
- Our integers can get very large.

$$
128^{|p|-1}
$$

## Example

"> p = "University of California"
"> base_128_hash(p, 0, len(p))
250986132488946228262668052010265908722774302242017

## Large Integers

- In some languages, large integers will overflow.
- Python has arbitrary size integers.
- But comparison no longer takes $\Theta(1)$


## Solution

- Use modular arithmetic.
- Example:
$(4+7) \% 3=11 \% 3=2$
- Results in much smaller numbers.


## Idea

Choose a random prime number $>|m|$.
Do all arithmetic modulo this number.

## Fact

$$
\begin{aligned}
& \left(c_{1} \times b^{2}+c_{2} \times b+c_{3}\right) \bmod q \\
& \quad=\left(\left[\left(c_{1} \bmod q\right) b+c_{2}\right] \bmod q\right) b+c_{3} \bmod q
\end{aligned}
$$

$\Rightarrow$ Example: $c_{1}=7, c_{2}=3, c_{3}=5, b=2, q=11$

- This allows us to keep numbers small.
import math
def base_128_hash(s, start, stop, q): """Hash $\bar{s}[s t a r t: s t o p] ~ m o d ~ q ~ b y ~ i n t e r p r e t i n g ~ a s ~ A S C I I ~ b a s e ~ 128 " " " ~$ total $=0$ while stop > start:
total *= 128
total $+=$ ord(s[start])
total \%= q
start += 1
return total

```
def update_base_128_hash(s, start, stop, old, q):
 length = stop - start
 # assumes ASCII encoding, base 128
 # remove the old value, effectively subtracting
 # ord(s[start]) * 128**(length-1) from old, but
 # mod q so that we don't overflow
 new = old - ord(s[start-1]) * pow(128, length - 1, q)
 # "shift" up
 new *= 128
 new %= q
 # add the new character
 new += ord(s[stop - 1])
 new %= q
 return new
print(base_128_hash("DSC190", 0, 6, 499))
```


## Example

```
"> base_128_hash("testing", start=0, stop=4, q=117)
103
"> base_128_hash("testing", start=1, stop=5, q=117)
84
"> update_base_128_hash("testing", start=1, stop=5, old=103, q=117)
84
```


## Note

- Now there can be collisions!
- Even if window hash matches pattern hash, need to verify that strings are indeed the same.

```
def rabin_karp(s, p, q):
 hashed_window = base_128_hash(s, 0, len(p), q)
 hashed_pattern = base_128_hash(p, \odot, len(p), q)
 match_locations = []
 if s[\odot:len(p)] == p:
 match_locations.append(\odot)
 for i in range(1, len(s) - len(p) + 1):
 # update the hash
 hashed_window = update_base_128_hash(s, i, i + len(p), hashed_window, q)
 if hashed_window == hashed_pattern:
 # make sure this isn't a false match due to collision
 if s[i:i + len(p)] == p:
 match_locations.append(i)
 return match_locations
```


## Time Complexity

- If $q$ is prime and $>|p|$, the chance of two different strings colliding is small.
- From before: if the number of matches is small, Rabin-Karp will take $\Theta(|s|+|p|)$ expected time.
- Since $|p| \leq|s|$, this is $\Theta(s)$.
- Worst-case time: $\Theta(|s| \cdot|p|)$.

