DSC 190 Lecture 11 | Part Today's Lectur

Where are we?

- We've been studying algorithm design.
- Greedy algorithms
- Typically fast
- But only guaranteed to find optimal answer for a select few problems (e.g., activity scheduling)
- Backtracking
- Usually have bad worst case (exponential!)
- But are guaranteed to find optimal answer.

Today

- Dynamic Programming: backtracking + memoization.
- Just as general as backtracking.
- And for some problems, massively faster.
- A "sledgehammer" of algorithm design. ${ }^{1}$

Today

- A new problem: weighted activity scheduling.
- We'll design a dynamic programming solution in steps:

1. Backtracking solution.
2. "Nicer" backtracking with repeating subproblems.
3. Give backtracking algorithm a short-term memory.

- We'll turn an exponential time algorithm to linear by adding 2 lines of code.

$$
\text { DST } 190
$$

Lecture 11 | Part 2

Vacation Planning

Weighted Activity Selection Problem

- Given: a set of activities each with start, finish, weight.
- Goal: Choose set of compatible activities so as to maximize total weight.

Exercise

Find a schedule with the maximum total weight.

Greedy?

- Remember the unweighted problem: maximize total number of activities.
- Greedy solution: take compatible activity that finishes earliest, repeat.
- This was guaranteed to find optimal in that problem.
- It may not find optimal for weighted problem.

Greedy?

Greedy?

Maybe a different greedy approach works?

- Idea: take compatible activity with largest weight.

Greedy?

Don't be greedy!

- The greedy approach is not guaranteed to find best.
- Note: you might get lucky on a particular instance!

What now?

- We'll try backtracking.
- It will take exponential time.
- But with a small change, we'll get a linear time algorithm that is guaranteed to find the best!

DSC 190 Lecture 11 | Part 3
Step 01: Backtracking Solution

Backtracking

- We'll build up a schedule, one activity at a time.
- Choose an arbitrary activity, x .
\Rightarrow Recursively see what happens if we do include x.
$>$ Recursively see what happens if we don't include x.
- This will try all valid schedules, keep the best.

Backtracking

```
def mwsched_bt(activities):
    if not activities:
        return \odot
    # choose arbitrary activity
    x = activities.choose_arbitrary()
    # best with x
    best_with = ...
    # best without x
    best_without = ...
    return max(best_with, best_without)
```


Recursive Subproblems

- What is Best(activities) if we assume that x is in schedule?
- Imagine choosing x.
- Your current total weight is x . weight.
- Activities left to choose from: those compatible with x .
- Clearly, you want the best outcome for new situation (subproblem).
- Answer: x.weight + BEST(activities.compatible_with(x)))

activities.compatible_with(x)

Recursive Subproblems

- What is BEST(activities) if we assume that x is not in schedule?
\Rightarrow Imagine not choosing x.
- Your current total weight is \odot.
- Activities left to choose from: all except x.
- Clearly, you want the best outcome for new situation (subproblem).
- Answer: Best(activities.without(x)))

activities.without(x)

Backtracking

```
def mwsched_bt(activities):
    if not activities:
        return ©
    # choose arbitrary activity
    x = activities.choose_arbitrary()
    # best with x
    best_with = x.weight + mwsched_bt(activities.compatible_with(x))
    # best without x
    best_without = mwsched_bt(activities.without(x))
    return max(best_with, best_without)
```


Efficiency

- Worst case: recursive calls on problem of size $n-1$.
- Recurrence of form $T(n)=2 T(n-1)+\Theta(. .$.
- Exponential time in worst case.
- Could prune, branch \& bound, but there's a better way.

$$
\text { DSC } 190
$$

Step 02: A Nicer Backtracking Solution

Arbitrary Choices

- Our subproblems are arbitrary sets of activities.
- E.g., $\{1,3,4,5,8,11,12\}$
- Now: If we make choice of next event more carefully, the subproblems look much nicer.
- Something great happens!

A Nicer Choice

- Instead of choosing arbitrarily, choose the activity that starts first.


```
def mwsched_bt_nice(activities):
    if not activities:
        return \odot
    # choose activity which starts soonest
    x = activities.starting_first()
    # best with x
    best_with = x.weight + mwsched_bt(activities.compatible_with(x))
    # best without x
    best_without = mwsched_bt(activities.without(x))
    return max(best_with, best_without)
```


Assumption

- Assume:

1. events are ordered by their start time.
2. the event starting soonest is chosen.

- Then describing subproblems becomes easier.

activities.compatible_with(x)

- Results in a "nice" set of the form

$$
\{i, i+1, \ldots, n-1\}^{2}
$$

${ }^{2}$ Assuming x is the activity with first start time.

activities.without(x)

- Results in a "nice" set of the form $\{j, j+1, \ldots, n-1\}^{3}$

${ }^{3}$ Assuming x is the activity with first start time.

Representing Remaining Activities

- Assume events are in sorted order by start time.
- Subproblems are always of form
$\{i, i+1, i+2, \ldots, n-1\}$
- We can specify them with a single number, i.

```
def mwsched_bt_nice(activities, first: int=0):
    """Find best schedule using only events in activities[first:]
    Assumes activities sorted by start time.
    """
    if first >= len(activities):
        return \odot
    # choose first event
    x = activities[first]
    # best with x
    next_compatible = index_of_next_compatible(activities, after=first)
    best_with = x.weight + mwsched_bt_nice(activities, next_compatible)
    # best without x
    best_without = mwsched_bt_nice(activities, first + 1)
    return max(best_with, best_without)
```


index_of_next_compatible()

```
def index_of_next_compatible(activities, after: int):
    """Find index of first event starting after `after` ends.
    Assumes activities sorted by start time.
    """
    for j in range(after + 1, len(activities)):
        if activities[j].start >= activities[after].finish:
            return j
    return len(activities)
```


What did we gain?

- Can specify subproblems with integers instead of sets.

Saves memory.

- But there's an even better consequence!

Overlapping Subproblems

Overlapping Subproblems

- Backtracking doesn't have a memory.
- It will happily solve same subproblem over and over, getting same result each time.
- We'll speed it up by giving it a memory.

Important!

- Overlapping subproblems are a consequence of this more careful choice of event.
- When we chose arbitrarily, we didn't have (as many) overlapping subproblems.

DSC 190
Lecture 11 | Part 5 Step 03: Memoization

Backtracking + Memoization

- By making careful choices, we've found a backtracking solution with many overlapping subproblems.
- Idea:
- First time we see a subproblem, save the result!
\downarrow When we see it again, recall the solution.
- This is called memoization ${ }^{4}$.
"Not "memorization". That would make too much sense.

Memoization

- Keep a cache: dictionary or array mapping subproblems to solutions.
- Before solving a subproblem, check if already in cache.
- After solving a subproblem, save result in cache.

```
def mwsched_dp(activities, first: int=0, cache=None):
    """Find best schedule using events in activities[first:].
    Assumes activities sorted by start time."""
    if cache is None: # cache[i] is solution of activities[i:]
        cache = [None] * len(activities)
    if first >= len(activities):
        return 0
    # save some work if we've already computed this
if cache[first] is not None:
        return cache[first]
# choose first event
x = activities[first]
# best with x
next_compatible = index_of_next_compatible(activities, after=first)
best_with = x.weight + mwsched_dp(activities, next_compatible, cache=cache)
# best without x
best_without = mwsched_dp(activities, first + 1, cache=cache)
best = max(best_with, best_without)
# store result in cache for future reference
cache[first] = best
return best
```


Time Complexity

- There are only n unique subproblems.

$$
=\{0, \ldots, n-1\},\{1, \ldots, n-1\}, \ldots,\{n-1\}
$$

- Solve each one once.
- The memoized solution takes $\Theta(n)$ time.

Dynamic Programming

- This approach (backtracking + memoization) is called "top-down" dynamic programming.
- Often reduces time from exponential to polynomial.

DSC 190
Lecture 11 | Part 6
Top-Down vs. Bottom-Up

Top-Down

- Backtracking + memoization is known as "top down" dynamic programming.
- We start at top level problem, recursively find subproblems.
- But we can start from bottom-level problems, too.

Bottom-Up

- The top-down recursive code solves problems in order:

$$
\{6\},\{5,6\},\{4, \ldots, 6\},\{3, \ldots, 6\},\{2, \ldots, 6\},\{1, \ldots, 6\},\{0, \ldots, 6\}
$$

- The bottom-up approach starts with easiest subproblem, iteratively solves harder subproblems.
\Rightarrow Solve $\{6\}$. Use it to solve $\{5,6\}$. Use this to solve $\{4, \ldots, 6\}$, etc.

```
def mwsched_bottom_up(activities):
    """Assumes activities sorted by start time."""
    n = len(activities)
    # best[i] is the weight of the best possible schedule that can be formed
    # using activities[i:]. best[n] is a dummy value; it represents the "base case"
    # solution of zero. best[0] is solution to the full problem.
    best = [None] * (n + 1)
    best[n] = 0
    # solve easiest subproblem: when we have one event, activities[n-1]
    best[n-1] = activities[n-1].weight
    # iteratively solve subproblems from small to big,
    # using solutions of smaller problems in solving big
    for first in reversed(range(n-1)):
    x = activities[first]
        # best with
        next_compatible = index_of_next_compatible(activities, after=first)
        best_with = x.weight + best[next_compatible]
        # best without
        best_without = best[first + 1]
        best[first] = max(best_with, best_without)
    return best[\odot]
```


Example

$$
\text { best }=-\frac{1}{0}-\frac{62}{3} \frac{27}{4} \frac{27}{5} \frac{10}{6} \frac{0}{7}
$$

Which to use?

- Bottom-up and top-down will generally have same time complexity.
- Top-down arguably easier to design.
- Bottom-up avoids overhead of recursion.
- But bottom-up may solve unnecessary subproblems.

DST 190
Lecture 11 Part 7 Dynamic Programming

When can we use it?

- Memoization can be added to any backtracking algorithm.
- But it is only useful if there are overlapping subproblems.
- Not all problems yield overlapping subproblems.

How do we design them?

- General strategy for top-down:

1. Write a backtracking solution.
2. Modify backtracking solution to get overlapping subproblems that are "easy to describe". ${ }^{5}$
3. Add memoization.

- "Expert mode": identify recursive substructure immediately.
- Can be tricky; need to be creative.
${ }^{5}$ Easier said than done.

How do we design them?

- General strategy for bottom-up:

1. Write a top-down dynamic programming solution.
2. Analyze the order in which cache is filled in.
3. Iteratively solve subproblems in this order.

Are they guaranteed to be optimal?

- Yes! Dynamic programming is a form of backtracking, so it is guaranteed to find an optimal solution.

GATTACA C GATTATCA Is it at all useful for data science?

- Yes!
- Next time: the longest common subsequence problem and its applications to "fuzzy" string matching, DNA string comparison.
- Future (maybe): Hidden Markov Models, All-Pairs Shortest Paths

