
Lecture 11 | Part 1

Today’s Lecture

Where are we?▶ We’ve been studying algorithm design.▶ Greedy algorithms▶ Typically fast▶ But only guaranteed to find optimal answer for a
select few problems (e.g., activity scheduling)▶ Backtracking▶ Usually have bad worst case (exponential!)▶ But are guaranteed to find optimal answer.

Today▶ Dynamic Programming: backtracking +
memoization.▶ Just as general as backtracking.▶ And for some problems, massively faster.▶ A “sledgehammer” of algorithm design.1

1Dasgupta, Papadimitriou, Vazirani

Today▶ A new problem: weighted activity scheduling.▶ We’ll design a dynamic programming solution in
steps:
1. Backtracking solution.
2. “Nicer” backtracking with repeating subproblems.
3. Give backtracking algorithm a short-term memory.▶ We’ll turn an exponential time algorithm to

linear by adding 2 lines of code.

Lecture 11 | Part 2

Weighted Activity Selection Problem

Vacation Planning

7 8 9 10 11 12 13 14 15 16 17 18 19 20

breakfast
weight: 20

sunrise beach hike
weight: 3

swim
weight: 5

surf
weight: 7

lunch
weight: 20

nap
weight: 25

mountain climbing
weight: 50

javascript tutorial
weight: -3

python tutorial
weight: 10

sunset beach hike
weight: 22

luau
weight: 16

Weighted Activity Selection Problem▶ Given: a set of activities each with start, finish,
weight.▶ Goal: Choose set of compatible activities so as to
maximize total weight.

Exercise
Find a schedule with the maximum total weight.

7 8 9 10 11 12 13 14 15 16 17 18 19 20

breakfast
weight: 20

sunrise beach hike
weight: 3

swim
weight: 5

surf
weight: 7

lunch
weight: 20

nap
weight: 25

mountain climbing
weight: 50

javascript tutorial
weight: -3

python tutorial
weight: 10

sunset beach hike
weight: 22

luau
weight: 16

Greedy?▶ Remember the unweighted problem: maximize
total number of activities.▶ Greedy solution: take compatible activity that
finishes earliest, repeat.▶ This was guaranteed to find optimal in that
problem.▶ It may not find optimal for weighted problem.

Greedy?

7 8 9 10 11 12 13 14 15 16 17 18 19 20

breakfast
weight: 20

sunrise beach hike
weight: 3

swim
weight: 5

surf
weight: 7

lunch
weight: 20

nap
weight: 25

mountain climbing
weight: 50

javascript tutorial
weight: -3

python tutorial
weight: 10

sunset beach hike
weight: 22

luau
weight: 16

Greedy?▶ Maybe a different greedy approach works?▶ Idea: take compatible activity with largest
weight.

Greedy?

7 8 9 10 11 12 13 14 15 16 17 18 19 20

breakfast
weight: 20

sunrise beach hike
weight: 3

swim
weight: 5

surf
weight: 7

lunch
weight: 20

nap
weight: 25

mountain climbing
weight: 50

javascript tutorial
weight: -3

python tutorial
weight: 10

sunset beach hike
weight: 22

luau
weight: 16

Don’t be greedy!▶ The greedy approach is not guaranteed to find
best.▶ Note: you might get lucky on a particular
instance!

What now?▶ We’ll try backtracking.▶ It will take exponential time.▶ But with a small change, we’ll get a linear time
algorithm that is guaranteed to find the best!

Lecture 11 | Part 3

Step 01: Backtracking Solution

Backtracking▶ We’ll build up a schedule, one activity at a time.▶ Choose an arbitrary activity, x.▶ Recursively see what happens if we do include x.▶ Recursively see what happens if we don’t include x.▶ This will try all valid schedules, keep the best.

Backtracking
def mwsched_bt(activities):

if not activities:
return 0

choose arbitrary activity
x = activities.choose_arbitrary()

best with x
best_with = ...

best without x
best_without = ...

return max(best_with, best_without)

Recursive Subproblems▶ What is Best(activities) if we assume that x is in schedule?▶ Imagine choosing x.▶ Your current total weight is x.weight.▶ Activities left to choose from: those compatible with x.▶ Clearly, you want the best outcome for new situation
(subproblem).▶ Answer: x.weight + Best(activities.compatible_with(x)))

activities.compatible_with(x)

7 8 9 10 11 12 13 14 15 16 17 18 19 20

breakfast
weight: 20

sunrise beach hike
weight: 3

swim
weight: 5

surf
weight: 7

lunch
weight: 20

nap
weight: 25

mountain climbing
weight: 50

javascript tutorial
weight: -3

python tutorial
weight: 10

sunset beach hike
weight: 22

luau
weight: 16

Recursive Subproblems▶ What is Best(activities) if we assume that x is not in
schedule?▶ Imagine not choosing x.▶ Your current total weight is 0.▶ Activities left to choose from: all except x.▶ Clearly, you want the best outcome for new situation
(subproblem).▶ Answer: Best(activities.without(x)))

activities.without(x)

7 8 9 10 11 12 13 14 15 16 17 18 19 20

breakfast
weight: 20

sunrise beach hike
weight: 3

swim
weight: 5

surf
weight: 7

lunch
weight: 20

nap
weight: 25

mountain climbing
weight: 50

javascript tutorial
weight: -3

python tutorial
weight: 10

sunset beach hike
weight: 22

luau
weight: 16

Backtracking
def mwsched_bt(activities):

if not activities:
return 0

choose arbitrary activity
x = activities.choose_arbitrary()

best with x
best_with = x.weight + mwsched_bt(activities.compatible_with(x))

best without x
best_without = mwsched_bt(activities.without(x))

return max(best_with, best_without)

{0,…,6} →3

{0,5,6} →5

{0} →0

∅ ∅
{0,6} →6

{0} →0

∅ ∅
{6} →6

∅ ∅

{0,1,2,4,5,6} →1

{4, 5, 6} →5

∅ {4, 6} →4

∅ ∅
{0,2,4,5,6} →6

{0,2} →0

∅ ∅
{0,2,4,5} →2

{5} →5

∅ ∅
{0,4,5} →4

{0} →0

∅ ∅
{0,5} →0

{5} →5

∅ ∅
{0} →0

∅ ∅
0 1 2 3 4 5 6 7 8 9 10 11 12

#0
weight: 5

#1
weight: 20

#2
weight: 30

#3
weight: 35

#4
weight: 25

#5
weight: 27

#6
weight: 10

Lin
.

eXC .

inc
Y 32 eXC.

5
inc. 15 exc.

8 8

Efficiency▶ Worst case: recursive calls on problem of size𝑛 − 1.▶ Recurrence of form 𝑇(𝑛) = 2𝑇(𝑛 − 1) + Θ(…)▶ Exponential time in worst case.▶ Could prune, branch & bound, but there’s a
better way.

Lecture 11 | Part 4

Step 02: A Nicer Backtracking Solution

Arbitrary Choices▶ Our subproblems are arbitrary sets of activities.▶ E.g., {1, 3, 4, 5, 8, 11, 12}▶ Now: If we make choice of next event more
carefully, the subproblems look much nicer.▶ Something great happens!

A Nicer Choice▶ Instead of choosing arbitrarily, choose the
activity that starts first.

0 1 2 3 4 5 6 7 8 9 10 11 12

#0
weight: 5

#1
weight: 20

#2
weight: 30

#3
weight: 35

#4
weight: 25

#5
weight: 27

#6
weight: 10

def mwsched_bt_nice(activities):
if not activities:

return 0

choose activity which starts soonest
x = activities.starting_first()

best with x
best_with = x.weight + mwsched_bt(activities.compatible_with(x))

best without x
best_without = mwsched_bt(activities.without(x))

return max(best_with, best_without)

Assumption▶ Assume:
1. events are ordered by their start time.
2. the event starting soonest is chosen.▶ Then describing subproblems becomes easier.

activities.compatible_with(x)▶ Results in a “nice” set of the form{𝑖, 𝑖 + 1, … , 𝑛 − 1}2
0 1 2 3 4 5 6 7 8 9 10 11 12

#0
weight: 5

#1
weight: 20

#2
weight: 30

#3
weight: 35

#4
weight: 25

#5
weight: 27

#6
weight: 10

2Assuming 𝑥 is the activity with first start time.
"

activities.without(x)▶ Results in a “nice” set of the form{𝑗, 𝑗 + 1, … , 𝑛 − 1}3
0 1 2 3 4 5 6 7 8 9 10 11 12

#0
weight: 5

#1
weight: 20

#2
weight: 30

#3
weight: 35

#4
weight: 25

#5
weight: 27

#6
weight: 10

3Assuming 𝑥 is the activity with first start time.

Representing Remaining Activities▶ Assume events are in sorted order by start time.▶ Subproblems are always of form{𝑖, 𝑖 + 1, 𝑖 + 2, … , 𝑛 − 1}▶ We can specify them with a single number, 𝑖.

def mwsched_bt_nice(activities, first: int=0):
”””Find best schedule using only events in activities[first:]
Assumes activities sorted by start time.
”””
if first >= len(activities):

return 0

choose first event
x = activities[first]

best with x
next_compatible = index_of_next_compatible(activities, after=first)
best_with = x.weight + mwsched_bt_nice(activities, next_compatible)

best without x
best_without = mwsched_bt_nice(activities, first + 1)

return max(best_with, best_without)

index_of_next_compatible()
def index_of_next_compatible(activities, after: int):

”””Find index of first event starting after `after` ends.
Assumes activities sorted by start time.
”””
for j in range(after + 1, len(activities)):

if activities[j].start >= activities[after].finish:
return j

return len(activities)

0 1 2 3 4 5 6 7 8 9 10 11 12

#0
weight: 5

#1
weight: 20

#2
weight: 30

#3
weight: 35

#4
weight: 25

#5
weight: 27

#6
weight: 10

What did we gain?▶ Can specify subproblems with integers instead of
sets.▶ Saves memory.▶ But there’s an even better consequence!

Overlapping Subproblems
{0,…,6} →0

{3,…,6} →3

{5,…,6} →5

∅ {6} →6

∅ ∅
{4,…,6} →4

∅ {5,…,6} →5

∅ {6} →6

∅ ∅

{1,…,6} →1

{4,…,6} →4

∅ {5,…,6} →5

∅ {6} →6

∅ ∅

{2,…,6} →2

{5,…,6} →5

∅ {6} →6

∅ ∅
{3,…,6} →3

{5,…,6} →5

∅ {6} →6

∅ ∅
{4,…,6} →4

∅ {5,…,6} →5

∅ {6} →6

∅ ∅
0 1 2 3 4 5 6 7 8 9 10 11 12

#0
weight: 5

#1
weight: 20

#2
weight: 30

#3
weight: 35

#4
weight: 25

#5
weight: 27

#6
weight: 10

Overlapping Subproblems▶ Backtracking doesn’t have a memory.▶ It will happily solve same subproblem over and
over, getting same result each time.▶ We’ll speed it up by giving it a memory.

Important!▶ Overlapping subproblems are a consequence of
this more careful choice of event.▶ When we chose arbitrarily, we didn’t have (as
many) overlapping subproblems.

{0,…,6} →3

{0,5,6} →5

{0} →0

∅ ∅
{0,6} →6

{0} →0

∅ ∅
{6} →6

∅ ∅

{0,1,2,4,5,6} →1

{4, 5, 6} →5

∅ {4, 6} →4

∅ ∅
{0,2,4,5,6} →6

{0,2} →0

∅ ∅
{0,2,4,5} →2

{5} →5

∅ ∅
{0,4,5} →4

{0} →0

∅ ∅
{0,5} →0

{5} →5

∅ ∅
{0} →0

∅ ∅
0 1 2 3 4 5 6 7 8 9 10 11 12

#0
weight: 5

#1
weight: 20

#2
weight: 30

#3
weight: 35

#4
weight: 25

#5
weight: 27

#6
weight: 10

Lecture 11 | Part 5

Step 03: Memoization

Backtracking + Memoization▶ By making careful choices, we’ve found a
backtracking solution with many overlapping
subproblems.▶ Idea:▶ First time we see a subproblem, save the result!▶ When we see it again, recall the solution.▶ This is called memoization4.

4Not “memorization”. That would make too much sense.

Memoization▶ Keep a cache: dictionary or array mapping
subproblems to solutions.▶ Before solving a subproblem, check if already in
cache.▶ After solving a subproblem, save result in cache.

def mwsched_dp(activities, first: int=0, cache=None):
”””Find best schedule using events in activities[first:].
Assumes activities sorted by start time.”””

if cache is None: # cache[i] is solution of activities[i:]
cache = [None] * len(activities)

if first >= len(activities):
return 0

save some work if we've already computed this
if cache[first] is not None:

return cache[first]

choose first event
x = activities[first]

best with x
next_compatible = index_of_next_compatible(activities, after=first)
best_with = x.weight + mwsched_dp(activities, next_compatible, cache=cache)

best without x
best_without = mwsched_dp(activities, first + 1, cache=cache)

best = max(best_with, best_without)

store result in cache for future reference
cache[first] = best
return best

{0,…,6} →0

{3,…,6} →3

{5,…,6} →5

∅ {6} →6

∅ ∅
{4,…,6} →4

∅ {5,…,6} →5

∅ {6} →6

∅ ∅

{1,…,6} →1

{4,…,6} →4

∅ {5,…,6} →5

∅ {6} →6

∅ ∅

{2,…,6} →2

{5,…,6} →5

∅ {6} →6

∅ ∅
{3,…,6} →3

{5,…,6} →5

∅ {6} →6

∅ ∅
{4,…,6} →4

∅ {5,…,6} →5

∅ {6} →6

∅ ∅
0 1 2 3 4 5 6 7 8 9 10 11 12

#0
weight: 5

#1
weight: 20

#2
weight: 30

#3
weight: 35

#4
weight: 25

#5
weight: 27

#6
weight: 10

0 1 2 3 4 5 6
cache =

Time Complexity▶ There are only 𝑛 unique subproblems.▶ {0,… , 𝑛 − 1}, {1, … , 𝑛 − 1}, … , {𝑛 − 1}▶ Solve each one once.▶ The memoized solution takes Θ(𝑛) time.

Dynamic Programming▶ This approach (backtracking + memoization) is
called “top-down” dynamic programming.▶ Often reduces time from exponential to
polynomial.

Lecture 11 | Part 6

Top-Down vs. Bottom-Up

Top-Down▶ Backtracking + memoization is known as “top
down” dynamic programming.▶ We start at top level problem, recursively find
subproblems.▶ But we can start from bottom-level problems,
too.

{0,…,6} →0

{3,…,6} →3

{5,…,6} →5

∅ {6} →6

∅ ∅
{4,…,6} →4

∅ {5,…,6} →5

∅ {6} →6

∅ ∅

{1,…,6} →1

{4,…,6} →4

∅ {5,…,6} →5

∅ {6} →6

∅ ∅

{2,…,6} →2

{5,…,6} →5

∅ {6} →6

∅ ∅
{3,…,6} →3

{5,…,6} →5

∅ {6} →6

∅ ∅
{4,…,6} →4

∅ {5,…,6} →5

∅ {6} →6

∅ ∅
0 1 2 3 4 5 6 7 8 9 10 11 12

#0
weight: 5

#1
weight: 20

#2
weight: 30

#3
weight: 35

#4
weight: 25

#5
weight: 27

#6
weight: 10

Bottom-Up▶ The top-down recursive code solves problems in
order:▶ {6}, {5, 6}, {4, … , 6}, {3, … , 6}, {2, … , 6}, {1, … , 6}, {0, … , 6}▶ The bottom-up approach starts with easiest
subproblem, iteratively solves harder
subproblems.▶ Solve {6}. Use it to solve {5, 6}. Use this to solve{4, … , 6}, etc.

def mwsched_bottom_up(activities):
”””Assumes activities sorted by start time.”””
n = len(activities)

best[i] is the weight of the best possible schedule that can be formed
using activities[i:]. best[n] is a dummy value; it represents the ”base case”
solution of zero. best[0] is solution to the full problem.
best = [None] * (n + 1)
best[n] = 0

solve easiest subproblem: when we have one event, activities[n-1]
best[n-1] = activities[n-1].weight

iteratively solve subproblems from small to big,
using solutions of smaller problems in solving big
for first in reversed(range(n-1)):

x = activities[first]

best with
next_compatible = index_of_next_compatible(activities, after=first)
best_with = x.weight + best[next_compatible]

best without
best_without = best[first + 1]

best[first] = max(best_with, best_without)

return best[0]

Example

0 1 2 3 4 5 6 7 8 9 10 11 12

#0
weight: 5

#1
weight: 20

#2
weight: 30

#3
weight: 35

#4
weight: 25

#5
weight: 27

#6
weight: 10

0 1 2 3 4 5 6 7
best =

Which to use?▶ Bottom-up and top-down will generally have
same time complexity.▶ Top-down arguably easier to design.▶ Bottom-up avoids overhead of recursion.▶ But bottom-up may solve unnecessary
subproblems.

Lecture 11 | Part 7

Dynamic Programming

When can we use it?▶ Memoization can be added to any backtracking
algorithm.▶ But it is only useful if there are overlapping
subproblems.▶ Not all problems yield overlapping subproblems.

How do we design them?▶ General strategy for top-down:
1. Write a backtracking solution.
2. Modify backtracking solution to get overlapping
subproblems that are “easy to describe”.5

3. Add memoization.▶ “Expert mode”: identify recursive substructure
immediately.▶ Can be tricky; need to be creative.

5Easier said than done.

How do we design them?▶ General strategy for bottom-up:
1. Write a top-down dynamic programming solution.
2. Analyze the order in which cache is filled in.
3. Iteratively solve subproblems in this order.

Are they guaranteed to be optimal?▶ Yes! Dynamic programming is a form of
backtracking, so it is guaranteed to find an
optimal solution.

Is it at all useful for data science?▶ Yes!▶ Next time: the longest common subsequence problem and
its applications to “fuzzy” string matching, DNA string
comparison.▶ Future (maybe): Hidden Markov Models, All-Pairs Shortest
Paths

