DPSC /70

DATA STRUCTURES § ALLORITHMS

Lecture 11 Part1

Today'’s Lecture

Where are we?

We've been studying algorithm design.

Greedy algorithms
Typically fast
But only guaranteed to find optimal answer for a
select few problems (e.g., activity scheduling)

Backtracking
Usually have bad worst case (exponential!)
But are guaranteed to find optimal answer.

Today

Dynamic Programming: backtracking +
memoization.

Just as general as backtracking.
And for some problems, massively faster.

A “sledgehammer” of algorithm design."

"Dasgupta, Papadimitriou, Vazirani

Today
A new problem: weighted activity scheduling.

We'll design a dynamic programming solution in
steps:
Backtracking solution.
“Nicer” backtracking with repeating subproblems.
Give backtracking algorithm a short-term memory.

We'll turn an exponential time algorithm to
linear by adding 2 lines of code.

DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 11 Part 2

Weighted Activity Selection Problem

Vacation Planning

|
I
I
I
sunrise beach hike mountain climbing sunset beach hike I
weight: 3 weight: 50 weight: 22 :
| | | | | | | | | |
breakfast surf javascript tutorial luau
weight: 20 weight: 7 weight: -3 weight: 16
Il Il | Il
swim lunch nap python tutorial

| ! ‘ ‘ ‘
I ! ‘ ‘ ‘
: weight: 5 : weight: 20 weight: 25 weight: 10 : : :
I ! ‘ ‘ !
I ! ‘ ‘ ‘
| ! ‘ ‘ ‘

Weighted Activity Selection Problem

Given: a set of activities each with start, finish,
weight.

Goal: Choose set of compatible activities so as to
maximize total weight.

I
l
hike 1
I
I
|

sunrise beach hike mountain climbing sunset beach
weight: 3 weight: 50 weight: 22

| | | | | | | | | |
| breakfast surf javascript tutorial luau
I weight: 20 weight: 7 weight: -3 weight: 16
| T T T T T
| | L | 1 | . | | |
: : swim : lunch nap python tutorial : : :
| | weight: 5 X weight: 20 weight: 25 weight: 10 X X X
	T	T	T		

Greedy?

Remember the unweighted problem: maximize
total number of activities.

Greedy solution: take compatible activity that
finishes earliest, repeat.

This was guaranteed to find optimal in that
problem.

It may not find optimal for weighted problem.

Greedy? G5

|
I
I
I
sunrise beach hike mountain climbing sunset beach hike I
weight: 3 weight: 50 weight: 22 :
| | | | | | | | | |
breakfast surf javascript tutorial luau
weight: 20 weight: 7 weight: -3 weight: 16
Il Il | Il
swim lunch nap python tutorial

| ! ‘ ‘ ‘
I ! ‘ ‘ ‘
: weight: 5 : weight: 20 weight: 25 weight: 10 : : :
I ! ‘ ‘ !
I ! ‘ ‘ ‘
| ! ‘ ‘ ‘

Greedy?
Maybe a different greedy approach works?

Idea: take compatible activity with largest
weight.

Greedy?

I
:
hike l
I
I
I

sunrise beach hike mountain climbing sunset beach
weight: 3 weight: 50 weight: 22
| | | | | | | |
breakfast surf javaseripttutorial \%
weight: 20 weight: 7 eight: wefGht: 16

swim

weight: 5

L ! a

weight: 20 1gh™25

pytho%ial
weight:

Don't be greedy!

The greedy approach is not guaranteed to find
best.

Note: you might get lucky on a particular
instance!

What now?
we'll try backtracking.
It will take exponential time.

But with a small change, we'll get a linear time
algorithm that is guaranteed to find the best!

DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 11 | Part 3

Step 01: Backtracking Solution

Backtracking

We'll build up a schedule, one activity at a time.

Choose an arbitrary activity, x.
Recursively see what happens if we do include x.
Recursively see what happens if we don’t include x.

This will try all valid schedules, keep the best.

Backtracking

def mwsched_bt(activities):
if not activities:
return o

choose arbitrary activity
X = activities.choose_arbitrary()

best with x
best_with =

best without x
best_without =

return max(best_with, best_without)

Recursive Subproblems

What is BEST(activities) if we assume that x is in schedule?

Imagine choosing x.
Your current total weight is x.weight.
Activities left to choose from: those compatible with x.

Clearly, you want the best outcome for new situation
(subproblem).

Answer: x.weight + BEST(activities.compatible_with(x)))

activities.compatible_with(x)

|
I
I
I
sunrise beach hike mountain climtiTng sunset beach hike I
weight: 3 % eight: 50 weight: 22 :
| | | | | | | | . | | | |
| breakfast surf javascript fa luau
I weight: 20 weight: 7 weight: -3 weight: 16
I
I I Il I Il | Il I I I
- = -
| | swim | lunch A~ nap 47 python tutorial | | | |
| | weight: 5 | wew weigfit: 25 weight: 10 | | |
| | T | T | T | | |
| | | | | |
| | | | | |

Recursive Subproblems

What is BEST(activities) if we assume that x is not in
schedule?

Imagine not choosing x.
Your current total weight is o.
Activities left to choose from: all except x.

Clearly, you want the best outcome for new situation
(subproblem).

Answer: BEST(activities.without(x)))

activities.without(x)

|
|
|

|
I
I
I
sunrise beach hike mountain climbing sunset beach hike I
weight: 3 weight: 50 weight: 22 :
) \'— | | | | | | \7 |
[breakfast surf javascript tutoriat luau
| weight: 20 weight: 7 weight: -3 weight: 16
I Il
: swim 'unch_j ra pythen tutorial
| weight: 5 (veight: 20 welg| ht 25 weight: 10
|
|
|

Backtracking

def mwsched_bt(activities):
if not activities:
return o

choose arbitrary activity
X = activities.choose_arbitrary()

best with x
best_with = x.weight + mwsched_bt(activities.compatible_with(x))

best without x
best _without = mwsched bt(activities.without(x))

return max(best_with, best_without)

o7

LK -

{01,2,4,5,6} 1

‘,{o)—>0 ‘ {0,6} >6 ‘ ‘ {4,5,6} >5 ‘
v
’7% we- ot .
0 () ‘ {0} »0 ‘ {6} »6 ‘ ‘ {4, 6} >4 ‘ ‘ 0,2} »0 ‘
#0 #3 #6
weight: 5 weight: 35 weight: 10
: I ’ # ’ #a :
i weight: 20 weight: 25 i
| | # #s
| | | weight: 30 | weight: 27 |

‘ {0,2,4,5,6} 6 ‘

{0,245} »2

‘ {5} »5 ‘

‘ {0} »0 ‘

Efficiency

Worst case: recursive calls on problem of size
n-1.

Recurrence of form T(n) = 2T(n - 1) + ©(...)
Exponential time in worst case.

Could prune, branch & bound, but there's a
better way.

DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 11 Part 4

Step 02: A Nicer Backtracking Solution

Arbitrary Choices

Our subproblems are arbitrary sets of activities.
Eg., {1,3,4,5,8, 11,12}

Now: If we make choice of next event more
carefully, the subproblems look much nicer.

Something great happens!

A Nicer Choice

Instead of choosing arbitrarily, choose the
activity that starts first.

#0

weight: 5

#3
weight: 35

#6
weight: 10

L L
#1

weight: 20

L
#4
weight: 25

#5
weight: 27

def mwsched bt nice(activities):
if not activities:
return o

choose activity which starts soonest
X = activities.starting_first()

best with x
best_with = x.weight + mwsched_bt(activities.compatible_with(x))

best without x
best_without = mwsched_bt(activities.without(x))

return max(best_with, best_without)

Assumption

Assume:
events are ordered by their start time.
the event starting soonest is chosen.

Then describing subproblems becomes easier.

activities.compatible_with(x)

Results in a “nice” set of the form
{i,i+1,..,n-1)

#0 #3 #6
x weight: 5 weight: 35 weight: 10
L L L L L
#, Ha
weiht: 20 weight: 25
/ | | | | |
| | | | | | I | |
#5
weidht: 30 weight: 27

2Assuming x is the activity with first start time.

activities.without(x)

Results in a “nice” set of the form
,j+1,..,n-1p

L L L L
#1 #4
weight: 20 weight: 25

[} [} [} [}

)
#3 #6
X/ ight: 5 weight: 35 weight: 10
I I I I I I I I I I I I
| L L
I
I

| | |
#2 #5
weight: 30 weight: 27

3Assuming x is the activity with first start time.

Representing Remaining Activities
Assume events are in sorted order by start time.

Subproblems are always of form
{i,i+1,i+2,..,n-1}

We can specify them with a single number, i.

def mwsched_bt_nice(activities, first: int=0):
"""Find best schedule using only events in activities[first:]
Assumes activities sorted by start time.
if first >= len(activities):
return o

choose first event
X = activities[first]

best with x
next_compatible = index_of_next_compatible(activities, after=first)
best_with = x.weight + mwsched_bt_nice(activities, next_compatible)

best without x
best_without = mwsched_bt_nice(activities, first + 1)

return max(best_with, best_without)

index_of_next_compatible()

def index_of_next_compatible(activities, after: int):
"""Find index of first event starting after ‘after’ ends.
Assumes activities sorted by start time.
nnn
for j in range(after + 1, len(activities)):
if activities[j].start >= activities[after].finish:
return j
return len(activities)

#0 #3 #6
weight: 5 weight: 35 weight: 10

L
#4
weight: 20 weight: 25

|
| # #5
| weight: 30 weight: 27

What did we gain?

Can specify subproblems with integers instead of

sets.
Saves memory.

But there’s an even better consequence!

Overlapping Subproblems

.....

.....

{6} 6 | {6} >6 | | {6} »6 | | {5,...6} 5 | | {4,...6} >4 |

|{6}—>6| |(5 s}—>5|
#0 3 6 {6} >6
weight: 5 weight: 35 weight: 10
T T T T | T \
L . I
h I
weight: 20 weight: 25 !
T T T T T T

i
2 #5
weight: 30 weight: 27

Overlapping Subproblems
Backtracking doesn’t have a memory.

It will happily solve same subproblem over and
over, getting same result each time.

We'll speed it up by giving it a memory.

Important!

Overlapping subproblems are a consequence of
this more careful choice of event.

When we chose arbitrarily, we didn’t have (as
many) overlapping subproblems.

{0,5,6} »5 {01,2,4,5,6} »1

{0} »o0 ‘ {06} »6 ‘ ‘ {4,5,6} >5 ‘ ‘ {0,2,4,5,6} 6 ‘

{0,245} »2

‘ {0} »0 ‘ ‘ {6} »>6 ‘ ‘ (4,6} >4 ‘ ‘ {0,2} >0 ‘

| #0 | | 3 #6
weight: 5 weight: 35 weight: 10
> >
T T | | T T T T | | T \ {515 {o}~0

| ‘ I

E e I

weight: 20 weight: 25 i

I

I

b
I

| 2] #s

| weight: 30 weight: 27

DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 11 Part5s

Step 03: Memoization

Backtracking + Memoization

By making careful choices, we've found a
backtracking solution with many overlapping
subproblems.

ldea:
First time we see a subproblem, save the result!
When we see it again, recall the solution.

This is called memoization®.

“Not “memorization”. That would make too much sense.

Memoization

Keep a cache: dictionary or array mapping
subproblems to solutions.

Before solving a subproblem, check if already in
cache.

After solving a subproblem, save result in cache.

def mwsched_dp(activities, first: int=e, cache=None):
"""Find best schedule using events in activities[first:].
Assumes activities sorted by start time.”””

if cache is None: # cache[i] is solution of activities[i:]
cache = [None] * len(activities)

if first >= len(activities):
return o

save some work if we've already computed this
if cache[first] is not None:
return cache[first]

choose first event
X = activities[first]

best with x
next_compatible = index_of_next_compatible(activities, after=first)
best_with = x.weight + mwsched_dp(activities, next_compatible, cache=cache)

best without x
best_without = mwsched_dp(activities, first + 1, cache=cache)

best = max(best_with, best_without)
store result in cache for future reference

cache[first] = best
return best

254Lt

AAAAA

,,,,,

#o
weight: 5

#3
weight: 35

#6
weight: 10

#

#a

weight: 20
T T

weight: 25
T

.
2]
weight: 30

#5
weight: 27

Time Complexity

There are only n unique subproblems.
{o,...,n-1},{1,...,n-1},...,{n - 1}

Solve each one once.

The memoized solution takes ©(n) time.

Dynamic Programming

This approach (backtracking + memoization) is
called “top-down” dynamic programming.

Often reduces time from exponential to
polynomial.

DPSC /90

DATA STRUCTURES § ALLORITHMS

Lecture 11 Part 6

Top-Down vs. Bottom-Up

Top-Down

Backtracking + memoization is known as “top
down” dynamic programming.

We start at top level problem, recursively find
subproblems.

But we can start from bottom-level problems,
too.

#0 £ 6 {6} 6
weight: 5 weight: 35 weight: 10
7 7 | 0 7 7 7 7 | 0 7 i
I | !
|
!

#4
weight: 20 weight: 25
T T T T T

i
2 #5
weight: 30 weight: 27

Bottom-Up

The top-down recursive code solves problems in
order:
{6},{5, 6},{4,...,6},{3,...,6},{2,...,6},{1,...,6},{0, ..., 6}

The bottom-up approach starts with easiest
subproblem, iteratively solves harder
subproblems.

Solve {6}. Use it to solve {5, 6}. Use this to solve
{4,..., 6]}, etc.

def mwsched_bottom_up(activities):
"""Assumes activities sorted by start time.”””
n = len(activities)

best[i] is the weight of the best possible schedule that can be formed

using activities[i:]. best[n] is a dummy value; it represents the ”base case”
solution of zero. best[e] is solution to the full problem.

best = [None] % (n + 1)

best[n] = o

solve easiest subproblem: when we have one event, activities[n-1]
best[n-1] = activities[n-1].weight

iteratively solve subproblems from small to big, 26 \Z f i _O_

using solutions of smaller problems in solving big _—
for first in reversed(range(n-1)): v)
x = activities[first]

best with
next_compatible = index_of_next_compatible(activities, after=first)
best_with = x.weight + best[next_compatible]

best without
best_without = best[first + 1]

best[first] = max(best_with, best_without)

return best[o]

Example

#0 #3 #6
weight: 5 weight: 35 weight: 10
I I I I I I I I I I
L L L L L |
#1 H4 I
weight: 20 weight: 25 :
| | | | | | | | | |
| | | | | | | | | |
1 7 #5
I weight: 30 weight: 27
best = — — — % &= -
0 1 2 3 4 7

Which to use?

Bottom-up and top-down will generally have
same time complexity.

Top-down arguably easier to design.
Bottom-up avoids overhead of recursion.

But bottom-up may solve unnecessary
subproblems.

DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 11 Part7

Dynamic Programming

When can we use it?

Memoization can be added to any backtracking
algorithm.

But it is only useful if there are overlapping
subproblems.

Not all problems yield overlapping subproblems.

How do we design them?

General strategy for top-down:

Write a backtracking solution.

Modify backtracking solution to get overlapping
subproblems that are “easy to describe”?

Add memoization.

“Expert mode”: identify recursive substructure
immediately.

Can be tricky; need to be creative.

SEasier said than done.

How do we design them?

General strategy for bottom-up:
Write a top-down dynamic programming solution.
Analyze the order in which cache is filled in.
Iteratively solve subproblems in this order.

Are they guaranteed to be optimal?

Yes! Dynamic programming is a form of
backtracking, so it is guaranteed to find an
optimal solution.

GATTACA
C LATTATCA
Is it at all useful for data science?

Yes!

Next time: the longest common subsequence problem and

its applications to “fuzzy” string matching, DNA string
comparison.

Future (maybe): Hidden Markov Models, All-Pairs Shortest
Paths

