
Lecture 10 | Part 1

Today’s Lecture

Beyond Greedy

▶ Greedy algorithms are typically fast, but may not
find the optimal answer.

▶ Brute force guarantees the optimal answer, but is
slow.

▶ Can we guarantee the optimal answer and be
faster than brute force?

Today

▶ The backtracking idea.

▶ It is a useful, general algorithm design
technique1.

▶ And the foundation of dynamic programming.

1Commonly seen in tech interviews

Lecture 10 | Part 2

The 0-1 Knapsack Problem

0-1 Knapsack
▶ Suppose you’re a thief.

▶ You have a knapsack (bag) that can fit 100L.
▶ And a list of 𝑛 things to possibly steal.

item size (L) price

TV 50 $400
iPad 2 $900
Printer 10 $100

⋮ ⋮ ⋮
▶ Goal: maximize total value of items you can fit in your
knapsack.

Example

item size (L) price

1 50 $40
2 10 $25
3 80 $100
4 5 $10
5 20 $20
6 30 $6
7 8 $32
8 17 $34

In the bag:

Total value:

Space remaining:

Greedy

▶ Does a greedy approach find the optimal?

▶ What do we mean by “greedy”?

▶ Idea #1: take most expensive available that will
fit.

Example

item size (L) price

1 50 $40
2 10 $25
3 80 $100
4 5 $10
5 20 $20
6 30 $6
7 8 $32
8 17 $34

In the bag:

Total value:

Space remaining:

Greedy, Idea #2

▶ We want items with high value for their size.

▶ Define “price density” =
item.price / item.size

▶ Idea #2: take item with highest price density.

Example

item size (L) price PD

1 50 $40 0.80
2 10 $25 2.50
3 80 $100 1.25
4 5 $10 2.00
5 20 $20 1.00
6 30 $6 0.20
7 8 $32 4.00
8 17 $34 2.00

In the bag:

Total value:

Space remaining:

Greedy is Not Optimal

▶ Claim: the best possible total value is $157.
▶ Items 2, 3, and 7.

Never Looking Back

▶ Once greedy makes a decision, it
never looks back.

▶ This is why it may be suboptimal.

▶ Backtracking: go back to
reconsider every previous
decision.

Lecture 10 | Part 3

Backtracking

Backtracking

▶ Reconsider every decision.

▶ If we initially tried including x, also try not
including x.
▶ Find the best solution among those that include 𝑥
▶ Find the best solution among those that exclude 𝑥
▶ Return the better of the two.

Backtracking
def knapsack(items, bag_size):

choose item arbitrarily from those that fit in bag
x = items.arbitrary_item(fitting_in=bag_size)

if None, it means there was no item that fit
if x is None:

return 0

assume x should be in bag, see what we get
best_with = ...

backtrack: now assume x should not be in bag, see what we get
best_without = ...

return max(best_with, best_without)

Recursive Subproblems
▶ What is Best(items, bag_size) if we assume that x is in the
bag?

▶ The best outcome is x.price + best choice of remaining items.

▶ Imagine choosing x.
▶ Your current total value is x.price.
▶ You have bag_size - x.size space left.
▶ Items left to choose from: items - x.

▶ Answer: x.price + Best(items - x, bag_size - x.size)

Recursive Subproblems
▶ What is Best(items, bag_size) if we assume that x is not the
bag?

▶ Clearly, you want the best outcome for remaining items.

▶ Imagine deciding x is not in the bag.
▶ Your current total value is 0.
▶ You have bag_size space left.
▶ Items left to choose from: items - x.

▶ Answer: 0 + Best(items - x, bag_size)

Backtracking
def knapsack(items, bag_size):

choose item arbitrarily from those that fit in bag
x = items.arbitrary_item(fitting_in=bag_size)

if None, it means there was no item that fit
if x is None:

return 0

assume x is in the bag, see what we get
best_with = x.price + knapsack(items - x, bag_size - x.size)

now assume x is not in bag, see what we get
best_without = 0 + knapsack(items - x, bag_size)

return max(best_with, best_without)

Backtracking
def knapsack(items, bag_size):

choose item arbitrarily from those that fit in bag
x = items.arbitrary_item(fitting_in=bag_size)

if None, it means there was no item that fit
if x is None:

return 0

items.remove(x)
best_with = x.price + knapsack(items, bag_size - x.size)
best_without = knapsack(items, bag_size)
items.replace(x)

return max(best_with, best_without)

Backtracking

▶ Backtracking: go back to
reconsider every previous
decision.

▶ Searches the whole tree.

▶ Can be thought of as a DFS on
implicit tree.

bag size: 100
choice: 3
with:
without:

bag size: 20
choice: 4
with:
without:

bag size: 15
choice: None
return: 0

bag size: 20
choice: None
return: 0

bag size: 100
choice: 2
with:
without:

bag size: 75
choice: 1
with:
without:

bag size: 25
choice: 4
with:
without:

bag size: 20
choice: None
return: 0

bag size: 25
choice: None
return: 0

bag size: 75
choice: 4
with:
without:

bag size: 70
choice: None
return: 0

bag size: 75
choice: None
return: 0

bag size: 100
choice: 1
with:
without:

bag size: 50
choice: 4
with:
without:

bag size: 45
choice: None
return: 0

bag size: 50
choice: None
return: 0

bag size: 100
choice: 4
with:
without:

bag size: 95
choice: None
return: 0

bag size: 100
choice: None
return: 0

include

include exclude

exclude

include

include

include exclude

exclude

include exclude

exclude

include

include exclude

exclude

include exclude

item size (L) price

1 50 $40
2 25 $25
3 80 $100
4 5 $10

Exercise

Is the backtracking solution guaranteed to find an
optimal solution?

Yes!

▶ It tries every valid combination and keeps the
best.
▶ A combination of items is valid if they fit in the bag
together.

Leaf Nodes

▶ Each leaf node is a different valid combination.

bag size: 100
choice: 3
with:
without:

bag size: 20
choice: 4
with:
without:

bag size: 15
choice: None
return: 0

bag size: 20
choice: None
return: 0

bag size: 100
choice: 2
with:
without:

bag size: 75
choice: 1
with:
without:

bag size: 25
choice: 4
with:
without:

bag size: 20
choice: None
return: 0

bag size: 25
choice: None
return: 0

bag size: 75
choice: 4
with:
without:

bag size: 70
choice: None
return: 0

bag size: 75
choice: None
return: 0

bag size: 100
choice: 1
with:
without:

bag size: 50
choice: 4
with:
without:

bag size: 45
choice: None
return: 0

bag size: 50
choice: None
return: 0

bag size: 100
choice: 4
with:
without:

bag size: 95
choice: None
return: 0

bag size: 100
choice: None
return: 0

include

include exclude

exclude

include

include

include exclude

exclude

include exclude

exclude

include

include exclude

exclude

include exclude

Exercise

Suppose instead of choosing an arbitrary node we
choose most expensive. Is it still guaranteed to
find an optimal solution?

Yes!

▶ The choice of node is arbitrary.

▶ Call tree will change, but all valid combinations
are still tried.

Exercise

How does backtracking relate to the greedy ap-
proach? How would you change the code to make
it greedy?

Summary
def knapsack_greedy(items, bag_size):

choose greedily
x = items.most_valuable_item(fitting_in=bag_size)

if None, it means there was no item that fit
if x is None:

return 0

assume x is in the bag, see what we get
best_with = x.price + knapsack(items - x, bag_size - x.size)

in the greedy approach, we don't do this
best_without = knapsack(items - x, bag_size)

return best_with

Lecture 10 | Part 4

Efficiency Analysis

A Benchmark

▶ Brute force: try every possible combination of
items.
▶ Even the invalid ones whose total size is too big.
▶ Why? Hard to know which are invalid without trying
them.

▶ There are Θ(2𝑛) possible combinations.

▶ So brute force takes Ω(2𝑛) time. Exponential :(

Time Complexity of Backtracking

def knapsack(items, bag_size):
choose item arbitrarily from those that fit in bag
x = items.arbitrary_item(fitting_in=bag_size)

if None, it means there was no item that fit
if x is None:

return 0

items.remove(x)
best_with = x.price + knapsack(items, bag_size - x.size)
best_without = knapsack(items, bag_size)
items.replace(x)

return max(best_with, best_without)

𝑇(𝑛) =

Backtracking Takes Exponential
Time

▶ ...in the worst case.

▶ This is just as bad as brute force.

▶ So why use it?

▶ Its worst case isn’t always indicative of its
practical performance.

Intuition

▶ Brute force tries all possible combinations.
▶ E.g., all combinations of items, even if they don’t fit in
the bag.

▶ Backtracking tries all valid combinations.
▶ E.g., all combinations of items that will fit in the bag.

▶ The number of valid combinations can be much
less than the number of possible combinations.2

2Not always true!

Pruning
3

4 2

1

4 4

1

4 4

in out

in

in out

out

in out

backtracking

3

4

1

2 2

2

1 1

2

1

4 4

1

4 4

in

in

in out

out

in out

out

in

in out

out

in out

brute force

Pruning

▶ Backtracking prunes branches that lead to
invalid solutions.

Example

▶ 23 items with size/price chosen from Unif([23, ..., 46])

▶ Bag size is 46

▶ Brute force: ?

▶ Backtracking: ?

Example

▶ 23 items with size/price chosen from Unif([23, ..., 46])

▶ Bag size is 46

▶ Brute force: 52 seconds.

▶ Backtracking: ?

Example

▶ 23 items with size/price chosen from Unif([23, ..., 46])

▶ Bag size is 46

▶ Brute force: 52 seconds.

▶ Backtracking: 4 milliseconds.

Example

▶ 300 items with size/price chosen from Unif([150, ...,
300])

▶ Bag size is 600

▶ Brute force: ?

▶ Backtracking: ?

Example

▶ 300 items with size/price chosen from Unif([150, ...,
300])

▶ Bag size is 600

▶ Brute force: ≈ 4.6 × 1077 years

▶ Backtracking: ?

Example

▶ 300 items with size/price chosen from Unif([150, ...,
300])

▶ Bag size is 600

▶ Brute force: ≈ 4.6 × 1077 years

▶ Backtracking: 30 seconds.

Exercise

What is the worst possible situation for backtrack-
ing? That is, when can we not prune any branches?

Backtracking Worst Case

▶ knapsack’s worst case is when bag size is very
large.

▶ All solutions are valid, aren’t pruned.

▶ But this is actually an easy case!

Exercise

What is the optimal solution when the bag is very
large (i.e., can fit everything)?

def knapsack_2(items, bag_size):
if sum(item.size for item in items) < bag_size:

return sum(item.price for item in items)

x = items.arbitrary_item(fitting_in=bag_size)

if x is None:
return 0

items.remove(item)
best_with = x.price + knapsack_2(items, bag_size - x.size)
best_without = knapsack_2(items, bag_size)
items.replace(x)

return max(best_with, best_without)

Pruning

▶ This further prunes the tree, resulting in speedup
for some inputs.

Lecture 10 | Part 5

Branch and Bound

Example

▶ Suppose you have a bag of size 100.

▶ One of the items is a diamond.
▶ Price: $10,000. Size: 1

▶ The other 49 items are coal.
▶ Price: $1. Size: 1

▶ Do you even consider not taking the diamond?

Idea

1. Assume we take the diamond, compute best
result.

2. Find quick upper bound for not taking diamond.

3. If upper bound is less than best for diamond,
don’t go down that branch.

▶ This is branch and bound; another way to prune
tree.

Branch and Bound
def knapsack_bb(items, bag_size, find_upper_bound):

try to make a good first choice
x = items.item_with_highest_price_density(fitting_in=bag_size)

if x is None:
return 0

items.remove(item)
best_with = x.price + knapsack_bb(items, bag_size - x.size)

upper_bound_without = find_upper_bound(items, bag_size)
if upper_bound_without > best_with:

we have to look down the other branch...
best_without = knapsack_bb(items, bag_size)

else:
prune that branch; don't look down it
best_without = 0

items.replace(x)

return max(best_with, best_without)

A Good First Choice

▶ Before, the first choice didn’t affect efficiency.
▶ We still explored all valid options.

▶ Now, it does.
▶ A good first choice allows us to prune more branches.

Example

item size (L) price

1 50 $40
2 25 $25
3 95 $1000
4 5 $10

Upper Bounds for Knapsack

▶ How do we get a good upper bound?

▶ One idea: the solution to the fractional knapsack
problem upper bounds that for 0/1 knapsack.

Lecture 10 | Part 6

Summary

Summary

▶ A backtracking approach is guaranteed to find an
optimal answer.

▶ It is typically faster than brute force, but can still
take exponential time.

Generalization

▶ Backtracking works for a very wide range of
discrete optimization problems.

▶ Generalizes beyond “include or exclude” binary
decision trees.
▶ Any situation where you have a set of choices, and
you can only pick one.

Summary

▶ We can speed up backtracking by pruning:

▶ Three ways to prune:
1. Prune invalid branches (default).

2. Prune “easy” cases.

3. Prune by branching and bounding.

Summary

▶ Next time: dynamic programming.

▶ We’ll see it is “just” backtracking + a cache.

