DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 10 | Part 1

Today's Lecture

Beyond Greedy

- Greedy algorithms are typically fast, but may not find the optimal answer.
- Brute force guarantees the optimal answer, but is slow.

Can we guarantee the optimal answer and be faster than brute force?

Today

- The backtracking idea.
- ► It is a useful, general algorithm design technique¹.
- ► And the foundation of **dynamic programming**.

¹Commonly seen in tech interviews

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 10 | Part 2

The 0-1 Knapsack Problem

0-1 Knapsack

- Suppose you're a thief.
- You have a knapsack (bag) that can fit 100L.
- And a list of *n* things to possibly steal.

item	size (L)	price
TV	50	\$400
iPad	2	\$900
Printer	10	\$100
:	:	:

 Goal: maximize total value of items you can fit in your knapsack.

Example

item	size (L)	price
1	50	\$40
2	10	\$25
3	80	\$100 \$100
4 <u>5</u>		\$10 \$20
6	30	\$6
7	8	\$32
8	17	Ş34

Greedy

- Does a greedy approach find the optimal?
- What do we mean by "greedy"?
- Idea #1: take most expensive available that will fit.

Example

item	size (L)	price
1	50	\$4 0
2	10	\$25
3	80	\$100
_ 4	5	\$10
5	20	\$20
6	30	\$6
7	8	\$32
8	17	\$34

In the bag: 3,8

Total value: \$134

Space remaining: 3

Greedy, Idea #2

We want items with high value for their size.

- Define "price density" =
 item.price / item.size
- Idea #2: take item with highest price density.

Example

PD

0.20 4.00

size (I) price

30

(D

	0.20 (2)	Pcc		6
1	50	\$40	0. 80	7 2 11 5
2	10	\$25	2.50	In the bag: $\frac{7, 2, 4, 8, 5, 6}{1}$
3	80	\$100	1.25	Total value:
4	5	\$10	2.00	rotal value:
_5	20	\$20	1.00	Space remaining:
_	20	۸ ۸	0.00	Space remaining,

Greedy is Not Optimal

- Claim: the best possible total value is \$157.
 - ► Items 2, 3, and 7.

Never Looking Back

- Once greedy makes a decision, it never looks back.
- This is why it may be suboptimal.
- Backtracking: go back to reconsider every previous decision.

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 10 | Part 3

- Reconsider every decision.
- If we initially tried including x, also try not including x.
 - Find the best solution among those that **include** x
 - Find the best solution among those that **exclude** x
 - Return the better of the two.

```
def knapsack(items. bag size):
    # choose item arbitrarily from those that fit in bag
    x = items.arbitrary_item(fitting_in=bag_size)
    # if None. it means there was no item that fit
    if x is None:
        return o
    # assume x should be in bag, see what we get
    best with = ...
    # backtrack: now assume x should not be in bag, see what we get
    best without = ...
    return max(best with, best without)
```

Recursive Subproblems

- What is BEST(items, bag_size) if we assume that x is in the bag?
- ► The best outcome is x.price + best choice of remaining items.
- Imagine choosing x.
 - Your current total value is x.price.
 - You have bag_size x.size space left.
 - ► Items left to choose from: items x.
- Answer: x.price + BEST(items x, bag_size x.size)

Recursive Subproblems

- What is BEST(items, bag_size) if we assume that x is not the bag?
- Clearly, you want the best outcome for remaining items.
- Imagine deciding x is not in the bag.
 - ► Your current total value is o.
 - You have bag size space left.
 - ► Items left to choose from: items x.
- Answer: 0 + BEST(items x, bag_size)

```
def knapsack(items, bag size):
    # choose item arbitrarily from those that fit in bag
   x = items.arbitrary_item(fitting_in=bag_size)
   # if None. it means there was no item that fit
   if x is None:
        return o
    # assume x is in the bag, see what we get
    best with = x.price + knapsack(items - x. bag size - x.size)
    # now assume x is not in bag, see what we get
    best without = 0 + knapsack(items - x, bag size)
    return max(best with, best without)
```

```
def knapsack(items. bag size):
    # choose item arbitrarily from those that fit in bag
    x = items.arbitrary item(fitting in=bag size)
    # if None. it means there was no item that fit
    if x is None:
        return o
    items remove(x)
    best_with = x.price + knapsack(items, bag_size - x.size)
    best without = knapsack(items, bag size)
    items.replace(x)
    return max(best with, best without)
```

- Backtracking: go back to reconsider every previous decision.
- Searches the whole tree.
- Can be thought of as a DFS on implicit tree.

Exercise

Is the backtracking solution **guaranteed** to find an optimal solution?

Yes!

- ► It tries every **valid** combination and keeps the best.
 - A combination of items is valid if they fit in the bag together.

Leaf Nodes

Each leaf node is a different valid combination.

Exercise

Suppose instead of choosing an **arbitrary** node we choose most **expensive**. Is it still **working me**guaranteed to find an optimal solution?

Yes!

- ► The choice of node is **arbitrary**.
- Call tree will change, but all valid combinations are still tried.

Exercise

How does backtracking relate to the greedy approach? How would you change the code to make it greedy?

Summary

```
def knapsack greedy(items, bag size):
   # choose greedilv
   x = items.most_valuable_item(fitting_in=bag_size)
   # if None. it means there was no item that fit
   if x is None:
        return o
    # assume x is in the bag, see what we get
    best with = x.price + knapsack(items - x. bag size - x.size)
    # in the greedy approach, we don't do this
    # best without = knapsack(items - x, bag size)
   return best with
```

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 10 | Part 4

Efficiency Analysis

$$\binom{n}{o}$$
 + $\binom{n}{i}$ + $\binom{n}{i}$ f ... + $\binom{n}{n}$ = 2^n
A Benchmark

- Brute force: try every **possible** combination of items.
 - Even the invalid ones whose total size is too big.
 - Why? Hard to know which are invalid without trying them.
- \triangleright There are Θ(2ⁿ) possible combinations.
- \triangleright So brute force takes $\Omega(2^n)$ time. **Exponential** : (

$T(n) = 2T(n/z) + n = O(nJ_0n)$ Time Complexity of Backtracking T(n-1) = 2T(n-2) + 1

def knapsack(items, bag_size):

choose item arbitrarily from those that fit in bag

x = items.arbitrary_item(fitting_in=bag_size)

if None, it means there was no item that fit

if x is None:

return 0

items.remove(x)

best_with = x.price + knapsack(items, bag_size - x.size)

best_without = knapsack(items, bag_size)

items.replace(x)

return max(best with, best without)

$$T(n) = 2T(n-i)+1$$
 $= 2^kT(n-k)+k$
 $= 2^nT(o)+n$

Backtracking Takes Exponential Time

- ...in the worst case.
- This is just as bad as brute force.
- So why use it?
- Its worst case isn't always indicative of its practical performance.

Intuition

- Brute force tries all possible combinations.
 - E.g., all combinations of items, even if they don't fit in the bag.
- Backtracking tries all valid combinations.
 - E.g., all combinations of items that will fit in the bag.
- ► The number of valid combinations can be much less than the number of possible combinations.²

²Not always true!

Pruning

backtracking

brute force

Pruning

Backtracking prunes branches that lead to invalid solutions.

Example

- 23 items with size/price chosen from Unif([23, ..., 46])
- ▶ Bag size is 46
- Brute force: ?
- Backtracking: ?

- 23 items with size/price chosen from Unif([23, ..., 46])
- ▶ Bag size is 46
- ▶ Brute force: 52 seconds.
- Backtracking: ?

- 23 items with size/price chosen from Unif([23, ..., 46])
- ▶ Bag size is 46
- ▶ Brute force: 52 seconds.
- Backtracking: 4 milliseconds.

- ▶ 300 items with size/price chosen from Unif([150, ..., 300])
- ▶ Bag size is 600
- ► Brute force: ?
- Backtracking: ?

- ▶ 300 items with size/price chosen from Unif([150, ..., 300])
- ▶ Bag size is 600
- ▶ Brute force: $\approx 4.6 \times 10^{77}$ years
- Backtracking: ?

- ▶ 300 items with size/price chosen from Unif([150, ..., 300])
- ▶ Bag size is 600
- ▶ Brute force: $\approx 4.6 \times 10^{77}$ years
- Backtracking: 30 seconds.

Exercise

What is the **worst possible situation** for backtracking? That is, when can we **not** prune any branches?

Backtracking Worst Case

- knapsack's worst case is when bag size is very large.
- All solutions are valid, aren't pruned.
- But this is actually an easy case!

Exercise

What is the optimal solution when the bag is very large (i.e., can fit everything)?

```
def knapsack 2(items, bag size):
    if sum(item.size for item in items) < bag size:</pre>
        return sum(item.price for item in items)
    x = items.arbitrary item(fitting in=bag size)
    if x is None:
        return o
    items.remove(item)
    best with = x.price + knapsack 2(items. bag size - x.size)
    best without = knapsack 2(items, bag size)
    items.replace(x)
    return max(best with, best without)
```

Pruning

► This further prunes the tree, resulting in speedup for some inputs.

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 10 | Part 5

Branch and Bound

- Suppose you have a bag of size 100.
- One of the items is a diamond.
 - Price: \$10,000. Size: 1
- ► The other 49 items are coal.
 - Price: \$1. Size: 1
- Do you even consider not taking the diamond?

Idea

- 1. Assume we take the diamond, compute best result.
- 2. Find quick upper bound for not taking diamond.
- 3. If upper bound is less than best for diamond, don't go down that branch.
- This is branch and bound; another way to prune tree.

Branch and Bound

```
def knapsack_bb(items, bag_size, find_upper_bound):
    # try to make a good first choice
    x = items.item with highest price density(fitting in=bag size)
    if x is None:
        return o
    items.remove(item)
    best with = x.price + knapsack bb(items, bag size - x.size)
    upper bound without = find upper bound(items, bag size)
    if upper bound without > best with:
        # we have to look down the other branch...
        best without = knapsack bb(items, bag size)
    else:
        # prune that branch; don't look down it
        best without = 0
    items.replace(x)
    return max(best with, best without)
```

A Good First Choice

- ▶ Before, the first choice didn't affect efficiency.
 - We still explored all valid options.
- ► Now, it does.
 - A good first choice allows us to prune more branches.

size (L)	price
50	\$40
25	\$25
95	\$1000
5	\$10
	50 25 95

Upper Bounds for Knapsack

- How do we get a good upper bound?
- One idea: the solution to the *fractional* knapsack problem upper bounds that for 0/1 knapsack.

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 10 | Part 6

Summary

Summary

- A backtracking approach is guaranteed to find an optimal answer.
- It is typically faster than brute force, but can still take **exponential time**.

Generalization

- Backtracking works for a very wide range of discrete optimization problems.
- Generalizes beyond "include or exclude" binary decision trees.
 - Any situation where you have a set of choices, and you can only pick one.

Summary

- We can speed up backtracking by pruning:
- Three ways to prune:
 - 1. Prune invalid branches (default).
 - 2. Prune "easy" cases.
 - 3. Prune by branching and bounding.

Summary

- Next time: **dynamic programming**.
- ► We'll see it is "just" backtracking + a cache.