DSC 190 Lecture 10 | Part Lecture $10 \mid$ Part 1
Today's Lecture

Beyond Greedy

- Greedy algorithms are typically fast, but may not find the optimal answer.
- Brute force guarantees the optimal answer, but is slow.
- Can we guarantee the optimal answer and be faster than brute force?

Today

- The backtracking idea.
- It is a useful, general algorithm design technique ${ }^{1}$.
- And the foundation of dynamic programming.

DSC 190
Lecture $10 \mid$ Part 2
The 0-1 Knapsack Problem

0-1 Knapsack

- Suppose you're a thief.
- You have a knapsack (bag) that can fit 100L.
- And a list of n things to possibly steal.

item	size (L)	price
TV	50	$\$ 400$
iPad	2	$\$ 900$
Printer	10	$\$ 100$
\vdots	\vdots	\vdots

- Goal: maximize total value of items you can fit in your knapsack.

Example

item	size (L)	price
1	50	$\$ 40$
2	10	$\$ 25$
3	80	$\$ 100$
4	5	$\$ 10$
5	20	$\$ 20$
6	30	$\$ 6$
7	8	$\$ 32$
8	17	$\$ 34$

In the bag: 3,5
Total value: \$120
Space remaining: 0

Greedy

- Does a greedy approach find the optimal?
- What do we mean by "greedy"?
- Idea \#1: take most expensive available that will fit.

Example

In the bag: 3,8
Total value: $\$ 134$
Space remaining: 3

Greedy, Idea \#2

- We want items with high value for their size.
- Define "price density" = item.price / item.size
- Idea \#2: take item with highest price density.

Example

			Exam
item	size (L)	price	PD
1	50	$\$ 40$	0.80
2	10	$\$ 25$	2.50
3	80	$\$ 100$	1.25
4	5	$\$ 10$	2.00
5	20	$\$ 20$	1.00
6	30	$\$ 6$	0.20
7	8	$\$ 32$	4.00
8	17	$\$ 34$	2.00

In the bag: $7,2,4,8,5,6$
Total value: \$127
Space remaining: 10

Greedy is Not Optimal

Claim: the best possible total value is $\$ 157$. Items 2, 3, and 7.

Never Looking Back

- Once greedy makes a decision, it never looks back.
- This is why it may be suboptimal.
- Backtracking: go back to reconsider every previous decision.

DSC 190 Lecture 10 Part
Backtracking

Backtracking

- Reconsider every decision.
- If we initially tried including x , also try not including x .
\checkmark Find the best solution among those that include x
- Find the best solution among those that exclude x
- Return the better of the two.

Backtracking

```
def knapsack(items, bag_size):
    # choose item arbitrarily from those that fit in bag
x = items.arbitrary_item(fitting_in=bag_size)
# if None, it means there was no item that fit
if x is None:
        return 0
# assume x should be in bag, see what we get
best_with = ...
# backtrack: now assume x should not be in bag, see what we get
best_without = ...
return max(best_with, best_without)
```


Recursive Subproblems

- What is BEST(items, bag_size) if we assume that x is in the bag?
- The best outcome is x.price + best choice of remaining items.
- Imagine choosing x.
\checkmark Your current total value is x.price.
- You have bag_size - x.size space left.
$>$ Items left to choose from: items - x.
- Answer: x.price + BEST(items - x, bag_size - x.size)

Recursive Subproblems

- What is BEST(items, bag_size) if we assume that x is not the bag?
- Clearly, you want the best outcome for remaining items.
- Imagine deciding x is not in the bag.
\checkmark Your current total value is 0 .
- You have bag_size space left.
- Items left to choose from: items - x.
- Answer: $0+$ BEst(items - x, bag_size)

Backtracking

```
def knapsack(items, bag_size):
# choose item arbitrarily from those that fit in bag
x = items.arbitrary_item(fitting_in=bag_size)
# if None, it means there was no item that fit
if x is None:
        return 0
# assume x is in the bag, see what we get
best_with = x.price + knapsack(items - x, bag_size - x.size)
# now assume x is not in bag, see what we get
best_without = 0 + knapsack(items - x, bag_size)
return max(best_with, best_without)
```


Backtracking

```
def knapsack(items, bag_size):
    # choose item arbitrarily from those that fit in bag
    x = items.arbitrary_item(fitting_in=bag_size)
    # if None, it means there was no item that fit
if x is None:
    return ©
items.remove(x)
best_with = x.price + knapsack(items, bag_size - x.size)
best_without = knapsack(items, bag_size)
items.replace(x)
return max(best_with, best_without)
```


Backtracking

- Backtracking: go back to reconsider every previous decision.
- Searches the whole tree.

- Can be thought of as a DFS on implicit tree.

Exercise

Is the backtracking solution guaranteed to find an optimal solution?

Yes!

- It tries every valid combination and keeps the best.
- A combination of items is valid if they fit in the bag together.

Leaf Nodes

Each leaf node is a different valid combination.

Exercise

Suppose instead of choosing an arbitrary node we choose most expensive. Is it still thethhishreguaranteed to find an optimal solution?

Yes!

- The choice of node is arbitrary.
- Call tree will change, but all valid combinations are still tried.

Exercise

How does backtracking relate to the greedy approach? How would you change the code to make it greedy?

Summary

```
def knapsack_greedy(items, bag_size):
    # choose greedily
    x = items.most_valuable_item(fitting_in=bag_size)
# if None, it means there was no item that fit
if x is None:
        return 0
# assume x is in the bag, see what we get
best_with = x.price + knapsack(items - x, bag_size - x.size)
# in the greedy approach, we don't do this
# best_without = knapsack(items - x, bag_size)
return best_with
```

DSC 190
DATA STRUCTURES $\begin{aligned} & \text { Algonk } \\ & \text { Lecture } 10\end{aligned}$ Lecture 10 Part 4
Efficiency Analysis

$$
\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n}=2^{n}
$$

- Brute force: try every possible combination of items.
- Even the invalid ones whose total size is too big.
- Why? Hard to know which are invalid without trying them.
- There are $\Theta\left(2^{n}\right)$ possible combinations.
- So brute force takes $\Omega\left(2^{n}\right)$ time. Exponential : (

$$
T(n)=2 T(n / 2)+n=\theta(n g g n)
$$

Time Complexity of Backtracking

$$
T(n-1)=2 T(n-2)+1
$$

def knapsack(items, bag_size):
\# Choose item arbitrarily from those that fit
$\mathrm{x}=$ items.arbitrary_item(fitting_in=bag_size)
\# if None, it means there was no item that fit
if x is None:
\qquad
\qquad
\qquad
\qquad
items.replace(x)

$$
\begin{aligned}
T(n) & =2 T(n-1)+1 \\
& =2^{k} T(n-k)+k \\
& =2^{n} T(0)+n \\
& =\Omega\left(2^{n}\right)
\end{aligned}
$$

Backtracking Takes Exponential Time

- ...in the worst case.
- This is just as bad as brute force.
- So why use it?
- Its worst case isn't always indicative of its practical performance.

Intuition

- Brute force tries all possible combinations.
- E.g., all combinations of items, even if they don't fit in the bag.
- Backtracking tries all valid combinations.
E.g., all combinations of items that will fit in the bag.
- The number of valid combinations can be much less than the number of possible combinations. ${ }^{2}$

[^0]
Pruning

backtracking

brute force

Pruning

- Backtracking prunes branches that lead to invalid solutions.

Example

- 23 items with size/price chosen from Unif([23, ..., 46])
- Bag size is 46
- Brute force: ?
- Backtracking: ?

Example

- 23 items with size/price chosen from Unif([23, ..., 46])
- Bag size is 46
- Brute force: 52 seconds.
- Backtracking: ?

Example

- 23 items with size/price chosen from Unif([23, ..., 46])
- Bag size is 46
- Brute force: 52 seconds.
- Backtracking: 4 milliseconds.

Example

- 300 items with size/price chosen from Unif([150, ..., 300])
- Bag size is 600
- Brute force: ?
- Backtracking: ?

Example

- 300 items with size/price chosen from Unif([150, ..., 300])
- Bag size is 600
- Brute force: $\approx 4.6 \times 10^{77}$ years
- Backtracking: ?

Example

- 300 items with size/price chosen from Unif([150, ..., 300])
- Bag size is 600
- Brute force: $\approx 4.6 \times 10^{77}$ years
- Backtracking: 30 seconds.

Exercise

What is the worst possible situation for backtracking? That is, when can we not prune any branches?

Backtracking Worst Case

- knapsack's worst case is when bag size is very large.
- All solutions are valid, aren't pruned.
- But this is actually an easy case!

Exercise

What is the optimal solution when the bag is very large (i.e., can fit everything)?

```
def knapsack_2(items, bag_size):
    if sum(item.size for item in items) < bag_size:
        return sum(item.price for item in items)
    x = items.arbitrary_item(fitting_in=bag_size)
    if x is None:
        return 0
    items.remove(item)
    best_with = x.price + knapsack_2(items, bag_size - x.size)
    best_without = knapsack_2(items, bag_size)
    items.replace(x)
    return max(best_with, best_without)
```


Pruning

- This further prunes the tree, resulting in speedup for some inputs.

DEC 190
Lecture 10 | Part 5 Branch and Bound

Example

- Suppose you have a bag of size 100.
\Rightarrow One of the items is a diamond.
- Price: $\$ 10,000$. Size: 1
- The other 49 items are coal.
- Price: \$1. Size: 1
- Do you even consider not taking the diamond?

Idea

1. Assume we take the diamond, compute best result.
2. Find quick upper bound for not taking diamond.
3. If upper bound is less than best for diamond, don't go down that branch.

- This is branch and bound; another way to prune tree.

Branch and Bound

```
def knapsack_bb(items, bag_size, find_upper_bound):
    # try to make a good first choice
    x = items.item_with_highest_price_density(fitting_in=bag_size)
    if x is None:
        return 0
    items.remove(item)
    best_with = x.price + knapsack_bb(items, bag_size - x.size)
    upper_bound_without = find_upper_bound(items, bag_size)
    if upper_bound_without > \overline{best_with:}
        # we have to look down the- other branch...
        best_without = knapsack_bb(items, bag_size)
    else:
        # prune that branch; don't look down it
        best_without = 0
    items.replace(x)
    return max(best_with, best_without)
```


A Good First Choice

- Before, the first choice didn't affect efficiency. - We still explored all valid options.
- Now, it does.
- A good first choice allows us to prune more branches.

Example

Upper Bounds for Knapsack

- How do we get a good upper bound?
- One idea: the solution to the fractional knapsack problem upper bounds that for 0/1 knapsack.

DSC 190 Lecture 10 | Part
Summary

Summary

- A backtracking approach is guaranteed to find an optimal answer.
- It is typically faster than brute force, but can still take exponential time.

Generalization

- Backtracking works for a very wide range of discrete optimization problems.
- Generalizes beyond "include or exclude" binary decision trees.
- Any situation where you have a set of choices, and you can only pick one.

Summary

- We can speed up backtracking by pruning:
- Three ways to prune:

1. Prune invalid branches (default).
2. Prune "easy" cases.
3. Prune by branching and bounding.

Summary

- Next time: dynamic programming.
- We'll see it is "just" backtracking + a cache.

[^0]: ${ }^{2}$ Not always true!

