
Lecture 9 | Part 1

Today’s Lecture

Algorithms

▶ We’ve been studying data structures.

▶ We’ll now move towards algorithm design.

▶ Data scientists do design algorithms.

▶ But perhaps more important to understand
solutions to common problems and which
problems are difficult.

Today

▶ We’ll introduce the idea of an optimization
problem.

▶ Talk about one easy strategy that sometimes
works.

Lecture 9 | Part 2

Optimization Problems and Design Strategies

Optimization Problems

▶ We often want to find the best.
▶ Shortest path between two nodes.
▶ Minimum spanning tree.
▶ Schedule that maximizes tasks completed.
▶ Line of best fit.

▶ These are optimization problems.

Example: Regression

▶ Given a set of 𝑛 points in ℝ2, find a straight line
𝑦 = 𝑚𝑥 + 𝑏 which minimizes the Sum of Squared
Errors.

▶ Given: set of 𝑛 points {(𝑥𝑖, 𝑦𝑖)} in ℝ2

▶ Search Space: all straight lines of form 𝑦 = 𝑚𝑥 + 𝑏

▶ Objective Function: 𝜙(𝑚, 𝑏) = ∑𝑛𝑖=1(𝑦𝑖 − (𝑚𝑥𝑖 + 𝑏))2

Continuous Optimization

▶ Here, the search space is continuous, often
infinite.

▶ Methods for solving often use calculus.

Discrete Optimization

▶ Here, the search space is discrete, typically finite.

▶ Example: shortest path between two nodes.

▶ Methods for solving (usually) can’t use calculus.

▶ We will focus on these problems.

Brute Force

▶ If search space is finite, can employ brute force
search.

▶ Typically search space is too large to be feasible.

Design Strategies

▶ Focus on design strategies for discrete
optimization.:
▶ Greedy Algorithms
▶ Backtracking
▶ Dynamic Programming

Lecture 9 | Part 3

The Greedy Approach by Example

Problem

▶ Choose: 4 numbers with largest sum.

95 83 80 77
62 65 55 75
85 91 70 74
88 72 59 79

Specification

▶ Given: A set 𝑋 of 𝑛 numbers and an integer 𝑘.

▶ Search Space: Subsets 𝑆 ⊂ 𝑋 of size 𝑘.

▶ Objective: maximize sum of numbers in 𝑆,

𝜙(𝑆) = ∑
𝑠∈𝑆

𝑠

Brute Force

▶ Brute force: try every possible subset of size 𝑘.

▶ How many are there?

(𝑛𝑘) = Θ(𝑛
𝑘)

▶ Time complexity is Θ(𝑘 ⋅ 𝑛𝑘)

The Greedy Approach

95 83 80 77
62 65 55 75
85 91 70 74
88 72 59 79

The Greedy Approach

▶ At every step, make the best decision at that
moment.

▶ Is this optimal? Not always, but it is here.

Proof
Let 𝑥1 ≥ ⋯ ≥ 𝑥𝑘 be the 𝑘 largest numbers. Let 𝑦1 ≥ ⋯ ≥ 𝑦𝑘 be some
other solution. Since 𝑥1, … , 𝑥𝑘 are the 𝑘 largest:

𝑥1 ≥ 𝑦1, 𝑥2 ≥ 𝑦2, … , 𝑥𝑘 ≥ 𝑦𝑘.
Therefore:

𝑘

∑
𝑖=1
𝑥𝑖 ≥

𝑘

∑
𝑖=1
𝑦𝑖

Since the other solution was arbitrary, this shows that the
greedy solution is at least as good as anything else; therefore it
is maximal.

Efficiency

▶ Algorithm: loop through once, find k largest
numbers.

▶ Linear time, Θ(𝑛).

▶ Much faster than Θ(𝑘 ⋅ 𝑛𝑘)!

A Variation

▶ Now you can only choose one number from each
row.

95 83 80 77
62 65 55 75
85 91 70 74
88 72 59 79

Specification

▶ Given: An 𝑛 × 𝑛 matrix 𝑋 of numbers and an
integer 𝑘.

▶ Search Space: Subsets 𝑆 ⊂ 𝑋 of size 𝑘 where each
element is from a different row of X.

▶ Objective: maximize sum of numbers in 𝑆.

𝜙(𝑆) = ∑
𝑠∈𝑆

𝑠

Optimality

▶ The greedy approach of choosing largest within
each row is optimal.

Another Variation

▶ Now you can only choose one from each
row/column.

95 83 80 77
62 65 55 75
85 91 70 74
88 72 59 79

Specification
▶ Given: An 𝑛 × 𝑛 matrix 𝑋 of numbers and an
integer 𝑘.

▶ Search Space: all subsets of entries of 𝑋 of size 𝑘
such that each element is in a different
row/column of 𝑋.

▶ Objective: maximize sum of numbers in subset.

𝜙(𝑆) = ∑
𝑠∈𝑆

𝑠

Greedy is not Optimal

▶ The optimal solution is: 80 + 75 + 91 + 88 = 334

95 83 80 77
62 65 55 75
85 91 70 74
88 72 59 79

Main Idea

For some problems, a greedy approach is guaran-
teed to find the optimal solution. For other prob-
lems, it is not.

Main Idea

Coming up with a greedy algorithm is usually sim-
ple – proving that it finds the optimal may not be
so easy.

Lecture 9 | Part 4

Activity Selection Problem

Vacation Planning

breakfast

sunrise beach hike

swim

surf

lunch nap

mountain climbing

javascript tutorial

python tutorial

sunset beach hike

luau

Formalized
▶ This is called the activity selection problem.

▶ Given: a set of start/finish times (𝑠𝑖, 𝑓𝑖) for 𝑛 events

▶ Search Space: all schedules 𝑆 with non-overlapping
events
▶ Format: 𝑆 is a set of event indices 𝑒1, 𝑒2, … , 𝑒𝑘

▶ Objective: maximize |𝑆| (number of events)

𝜙(𝑆) = |𝑆|

Greedy Strategies

▶ There are several strategies we might call
“greedy”.

▶ Approach #1: in order of duration, shortest
events first.

In Order of Duration

breakfast

sunrise beach hike

swim

surf

lunch nap

mountain climbing

javascript tutorial

python tutorial

sunset beach hike

luau

Greedy Strategies

▶ Approach #2: in order of start time.

In Order of Start Time

breakfast

sunrise beach hike

swim

surf

lunch nap

mountain climbing

javascript tutorial

python tutorial

sunset beach hike

luau

Greedy Strategies

▶ Approach #3: in order of finish time.

In Order of Finish Time

breakfast

sunrise beach hike

swim

surf

lunch nap

mountain climbing

javascript tutorial

python tutorial

sunset beach hike

luau

In Order of Finish Time

▶ Choose event with earliest finish time as first
event.

▶ Choose subsequent events in order of finish
time.
▶ provided that they are non-overlapping.

▶ This is guaranteed to find global optimum.

▶ But how do we know this?

Lecture 9 | Part 5

Exchange Arguments

Convincing Yourself

▶ Designing a greedy algorithm is usually easy.

▶ It can be hard to convince yourself that it is
optimal.

▶ Now, one proof technique: exchange arguments.

First: Proving Non-Optimality

▶ To show that a strategy is non-optimal, find a
counterexample.

Proving Optimality

▶ There may be many optimal solutions – we want
to show that the greedy solution 𝑆𝐺 is always one
of them.

Exchange Arguments
▶ Start with an arbitrary optimal solution, 𝑆∗.

▶ Make a chain of optimal solutions 𝑆∗, 𝑆1, 𝑆2, … , 𝑆𝐺

▶ At every step from 𝑆𝑘−1 to 𝑆𝑘:
▶ construct solution 𝑆𝑘 by exchanging part of 𝑆𝑘−1 with
𝑆𝐺

▶ argue that 𝑆𝑘 is valid1
▶ argue that 𝑆𝑘 is also optimal

▶ Proves 𝑆𝐺 is optimal, as
𝜙(𝑆∗) = 𝜙(𝑆1) = 𝜙(𝑆2) = … = 𝜙(𝑆𝐺)

1It is part of the search space and meets all constraints.

Exchange Argument for Activities

greedy
solution, 𝑆𝐺

optimal
solution, 𝑆∗

(𝑠𝑒1, 𝑓𝑒1) (𝑠𝑒2, 𝑓𝑒2) (𝑠3𝑒,𝑓𝑒3) (𝑠𝑒4, 𝑓𝑒4)

(𝑠𝑒∗1, 𝑓𝑒∗1) (𝑠𝑒∗2, 𝑓𝑒∗2) (𝑠𝑒∗3, 𝑓𝑒∗3) (𝑠𝑒∗4, 𝑓𝑒∗4)

Exchange Argument for Activities

greedy
solution, 𝑆𝐺

optimal
solution, 𝑆∗

hybrid
solution, 𝑆1

(𝑠𝑒1, 𝑓𝑒1) (𝑠𝑒2, 𝑓𝑒2) (𝑠3𝑒,𝑓𝑒3) (𝑠𝑒4, 𝑓𝑒4)

(𝑠𝑒∗1, 𝑓𝑒∗1) (𝑠𝑒∗2, 𝑓𝑒∗2) (𝑠𝑒∗3, 𝑓𝑒∗3) (𝑠𝑒∗4, 𝑓𝑒∗4)

(𝑠𝑒1, 𝑓𝑒1) (𝑠𝑒∗2, 𝑓𝑒∗2) (𝑠𝑒∗3, 𝑓𝑒∗3) (𝑠𝑒∗4, 𝑓𝑒∗4)

Exchange Argument for Activities

greedy
solution, 𝑆𝐺

optimal
solution, 𝑆∗

hybrid
solution, 𝑆2

(𝑠𝑒1, 𝑓𝑒1) (𝑠𝑒2, 𝑓𝑒2) (𝑠3𝑒,𝑓𝑒3) (𝑠𝑒4, 𝑓𝑒4)

(𝑠𝑒∗1, 𝑓𝑒∗1) (𝑠𝑒∗2, 𝑓𝑒∗2) (𝑠𝑒∗3, 𝑓𝑒∗3) (𝑠𝑒∗4, 𝑓𝑒∗4)

(𝑠𝑒1, 𝑓𝑒1) (𝑠𝑒2, 𝑓𝑒2) (𝑠𝑒∗3, 𝑓𝑒∗3) (𝑠𝑒∗4, 𝑓𝑒∗4)

Exchange Argument for Activities

greedy
solution, 𝑆𝐺

optimal
solution, 𝑆∗

hybrid
solution, 𝑆3

(𝑠𝑒1, 𝑓𝑒1) (𝑠𝑒2, 𝑓𝑒2) (𝑠3𝑒,𝑓𝑒3) (𝑠𝑒4, 𝑓𝑒4)

(𝑠𝑒∗1, 𝑓𝑒∗1) (𝑠𝑒∗2, 𝑓𝑒∗2) (𝑠𝑒∗3, 𝑓𝑒∗3) (𝑠𝑒∗4, 𝑓𝑒∗4)

(𝑠𝑒1, 𝑓𝑒1) (𝑠𝑒2, 𝑓𝑒2) (𝑠𝑒3, 𝑓𝑒3) (𝑠𝑒∗4, 𝑓𝑒∗4)

Exchange Argument for Activities

greedy
solution, 𝑆𝐺

optimal
solution, 𝑆∗

hybrid
solution, 𝑆4

(𝑠𝑒1, 𝑓𝑒1) (𝑠𝑒2, 𝑓𝑒2) (𝑠3𝑒,𝑓𝑒3) (𝑠𝑒4, 𝑓𝑒4)

(𝑠𝑒∗1, 𝑓𝑒∗1) (𝑠𝑒∗2, 𝑓𝑒∗2) (𝑠𝑒∗3, 𝑓𝑒∗3) (𝑠𝑒∗4, 𝑓𝑒∗4)

(𝑠𝑒1, 𝑓𝑒1) (𝑠𝑒2, 𝑓𝑒2) (𝑠𝑒3, 𝑓𝑒3) (𝑠𝑒4, 𝑓𝑒4)

Exchange Argument for Activities
Take an arbitrary optimal solution 𝑆∗. Suppose it is different from the
greedy solution, 𝑆𝐺 (as otherwise we’re done).

If it’s different, it has to be different somewhere. Let’s look at the first
event in 𝑆∗ that is not in 𝑆; call this the 𝑖th event in 𝑆∗.

We’ll exchange the 𝑖th event in 𝑆∗ with the 𝑖th event in 𝑆𝐺, but we have
to be a little careful: what if |𝑆∗| > |𝑆𝐺|, so that it’s possible that 𝑆𝐺
has no 𝑖th element? So there are two cases: 𝑖 ≤ |𝑆𝐺| and 𝑖 > |𝑆𝐺|.

Exchange Argument for Activities
First case: 𝑖 ≤ |𝑆𝐺|. Then exchange the 𝑖th event in 𝑆∗ with the 𝑖th
event in 𝑆𝐺, creating a new solution 𝑆′.

This is valid: the event from 𝑆𝐺 cannot overlap with any of the events
in 𝑆∗, since the previous 𝑖 − 1 events in 𝑆∗ are the same as in 𝑆𝐺 (and
they didn’t overlap), and the finish time of the greedy event is ≤ the
finish time of event it is replacing, so it cannot overlap with the
remaining events.

It is also optimal, since |𝑆′| = |𝑆∗|.

Exchange Argument for Activities
Second case: 𝑖 > |𝑆𝐺|. This means that there is at least one “extra”
event in 𝑆∗ than in 𝑆𝐺.

But this cannot happen: this extra event does not overlap with the
events in 𝑆𝐺 (since 𝑆𝐺 is equal to the first 𝑖 − 1 elements of 𝑆∗, and the
“extra” event doesn’t overlap with them). Its finish time is larger than
any event in 𝑆𝐺. So the greedy approach would have included this
event. Thus this case is not possible.

Exchange Argument for Activities
In either case, 𝑆′ is a valid optimal schedule.

𝑆∗ and 𝑆𝐺 can differ in only a finite number of places; therefore,
repeating this procedure a finite number of times produces a chain of
optimal solutions where each solution is more similar to 𝑆𝐺. The chain
terminates when 𝑆𝐺 is reached, which shows that 𝑆𝐺 is optimal
(|𝑆𝐺| = |𝑆∗|).

Lecture 9 | Part 6

Minimum Spanning Trees

a

b

c

d

e

f

g

h

4

32

8

7

3

12

2

55
91

16

22

25

a

b

c

d

e

f

g

h

4

32

8

7

3

12

2

55
91

16

22

25

MSTs and Clustering

MSTs and Clustering

Minimum Spanning Trees

▶ Given: a weighted graph 𝐺 = (𝑉, 𝐸,𝜔), where
𝜔 ∶ 𝐸 → ℝ.

▶ Search Space: all spanning trees 𝑇 = (𝑉, 𝐸′),
where 𝐸′ ⊂ 𝐸.

▶ Objective: minimize total edge weight

𝜙(𝑇) = ∑
𝑒∈𝐸′

𝜔(𝑒)

Kruskal’s Algorithm

▶ Kruskal’s Algorithm is a greedy algorithm for
computing a MST.

▶ Idea: add edges one-by-one in order of weight.
▶ But only if edge does not make a cycle!

a

b

c

d

e

f

g

h

4

32

8

7

3

12

2

55
91

16

22

25

Kruskal’s Algorithm (Pseudocode)

def kruskals(graph, weight):
mst = UndirectedGraph()
edges = sorted(graph.edges, key=weight)

for (u, v) in edges:
if u and v are not connected in mst:

mst.add_edge(u, v)

return mst

Implementing Kruskal’s Algorithm

def kruskals(graph, weight):
mst = UndirectedGraph()
edges = sorted(graph.edges, key=weight)

dsf = DisjointSetForest()
for i in range(len(graph.nodes)):

dsf.make_set()

for (u, v) in edges:
if dsf.find_set(u) != dsf.find_set(v):

mst.add_edge(u, v)
dsf.union(u, v)

return mst

Optimality

▶ Kruskal’s Algorithm find an optimal solution.

▶ We can prove this with an exchange argument.

Notes
▶ The greedy approach produces a valid spanning
tree.

▶ Any two spanning trees have same number of
edges.

▶ Removing an edge from a MST partitions nodes
in two.

a

b

c

d

e

f

g

h

4

32

8

7

3

12

2

55
91

16

22

25

Exchange Idea

▶ Suppose 𝑒∗ = (𝑢, 𝑣) is in 𝑇∗, but not in 𝑇.

▶ We’ll find a node 𝑒 on the path from 𝑢 to 𝑣 in 𝑇.

▶ Make a new tree, 𝑇 ′, by taking 𝑇∗, removing 𝑒∗,
replacing it with 𝑒.

Exchange Argument
Let 𝑇∗ be any minimum spanning tree, and let 𝑇𝐺 be a tree produced
by Kruskal’s algorithm. Suppose that 𝑇∗ and 𝑇𝐺 are different, and let
𝑒∗ = (𝑢, 𝑣) be an edge in 𝑇∗ that is not in 𝑇𝐺.

Consider the path from 𝑢 to 𝑣 in 𝑇𝐺. Adding 𝑒∗ to 𝑇𝐺 would create two
different paths from (𝑢, 𝑣), and thus a cycle. Let (𝐴, 𝐵) be the cut
produced if 𝑒∗ were removed from 𝑇∗, and let 𝑒 be an edge along the
cycle that crosses the cut (𝐴, 𝐵) (there must be at least one).

We will exchange 𝑒∗ in 𝑇∗ for the edge 𝑒.

Exchange Argument
First, this will create a valid spanning tree. Removing 𝑒∗ in 𝑇∗ breaks
the tree into two connected components with disjoint node sets 𝐴 and
𝐵. Since 𝑒 crosses (𝐴, 𝐵), adding it will re-connected the disconnected
components, and thus form a spanning tree, 𝑇 ′.

Second, the new tree is also optimal. We claim that 𝜔(𝑒′) ≥ 𝜔(𝑒). At
the time 𝑒′ was considered by Kruskal’s, it was rejected because it
would create a cycle. Meaning that edge 𝑒 was already added,
implying that 𝜔(𝑒) ≤ 𝜔(𝑒∗). As such, replacing 𝑒∗ with 𝑒 can only
decrease or maintain2 the total edge weight. Thus 𝑇 ′ must be optimal.

Repeat this process, creating a chain of trees 𝑇∗, 𝑇1, 𝑇2, … , 𝑇𝐺. Since
each tree is optimal, 𝑇𝐺 is as well.

2In fact, it must maintain. Decreasing would contradict fact that 𝑇∗ is
optimal.

Lecture 9 | Part 7

Designing Greedy Algorithms

Designing Algorithms

▶ When do we know to use a greedy algorithm?

▶ It isn’t always obvious.

A Pattern

▶ Our examples have a common pattern: sort by
some attribute, then loop through.
▶ Number grid: take numbers in descending order.
▶ Activities: take activities in increasing order of finish
time.

▶ MST: take edges in increasing order of weight.

▶ This is a new justification for value of sorting.

▶ Suggestion: when tackling a problem, try sorting
first.

Greedy Approximations

▶ A greedy algorithm can be useful, even if not
guaranteed to produce optimal answer.

▶ Especially true if exact algorithms are slow.

▶ Example: 𝑘-means clustering (Lloyd’s algorithm)

𝑘-means Problem

▶ Given: 𝑛 data points 𝑋 in ℝ𝑑, parameter 𝑘.

▶ Search Space: all clusterings 𝐶 = {𝑋1, … , 𝑋𝑘} of 𝑋
into 𝑘 disjoint sets.

▶ Objective function: minimize

𝜙(𝐶) =
𝑘

∑
𝑖=1

∑
𝑥∈𝑋𝑖

(𝑥 − mean(𝑋𝑖))2

Greedy Algorithm
▶ Lloyd’s algorithm (a.k.a., the “k-means
algorithm”) is a greedy algorithm for minimizing
the 𝑘-means objective.

▶ Start with 𝑘 centroids, 𝜇1, … , 𝜇𝑘.

▶ At each step, let 𝑋𝑖 be set of points closest to 𝜇𝑖,
update 𝜇𝑖 to be mean(𝑋𝑖), repeat until
convergence.

▶ Each step decreases value of objective function.

Optimality

▶ Lloyd’s algorithm is not guaranteed to find
optimum.

▶ Then again, no feasible algorithm is.

▶ Used in practice because it is fast and “good
enough”.

