

Lecture 9 | Part 1

Today's Lecture

Algorithms

- We've been studying data structures.
- We'll now move towards algorithm design.
- Data scientists do design algorithms.
- But perhaps more important to understand solutions to common problems and which problems are difficult.

Today

- We'll introduce the idea of an optimization problem.
- Talk about one easy strategy that sometimes works.

Lecture 9 | Part 2

Optimization Problems and Design Strategies

Optimization Problems

- We often want to find the **best**.
 - Shortest path between two nodes.
 - Minimum spanning tree.
 - Schedule that maximizes tasks completed.
 - Line of best fit.
- ► These are **optimization problems**.

Example: Regression

- ► Given a set of *n* points in ℝ², find a straight line y = mx + b which minimizes the Sum of Squared Errors.
- **Given**: set of *n* points $\{(x_i, y_i)\}$ in \mathbb{R}^2
- Search Space: all straight lines of form y = mx + b
- **Objective Function**: $\phi(m, b) = \sum_{i=1}^{n} (y_i (mx_i + b))^2$

Continuous Optimization

Here, the search space is continuous, often infinite.

Methods for solving often use calculus.

Discrete Optimization

- Here, the search space is discrete, typically finite.
- Example: shortest path between two nodes.
- Methods for solving (usually) can't use calculus.
- ▶ We will focus on these problems.

Brute Force

- If search space is finite, can employ brute force search.
- Typically search space is too large to be feasible.

Design Strategies

- Focus on design strategies for discrete optimization.:
 - Greedy Algorithms
 - Backtracking
 - Dynamic Programming

Lecture 9 | Part 3

The Greedy Approach by Example

Problem

Choose: 4 numbers with largest sum.

95	83	80	77
62	65	55	75
85	91	70	74
88	72	59	79

Specification

Given: A set *X* of *n* numbers and an integer *k*.

Search Space: Subsets $S \subset X$ of size k.

Objective: maximize sum of numbers in S,

$$\phi(S) = \sum_{s \in S} s$$

Brute Force

Brute force: try every possible subset of size *k*.

How many are there?

$$\binom{n}{k} = \Theta(n^k)$$

• Time complexity is
$$\Theta(k \cdot n^k)$$

The Greedy Approach

95	83	80	77
62	65	55	75
85	91	70	74
88	72	59	79

The Greedy Approach

- At every step, make the best decision at that moment.
- Is this optimal? Not always, but it is here.

Proof

Let $x_1 \ge \dots \ge x_k$ be the *k* largest numbers. Let $y_1 \ge \dots \ge y_k$ be some other solution. Since x_1, \dots, x_k are the *k* largest:

$$x_1 \ge y_1, \quad x_2 \ge y_2, \quad \dots, \quad x_k \ge y_k.$$

Therefore:

$$\sum_{i=1}^k x_i \ge \sum_{i=1}^k y_i$$

Since the other solution was arbitrary, this shows that the greedy solution is at least as good as anything else; therefore it is maximal.

Efficiency

- Algorithm: loop through once, find k largest numbers.
- Linear time, $\Theta(n)$.
- Much faster than $\Theta(k \cdot n^k)!$

A Variation

Now you can only choose one number from each row.

95	83	80	77
62	65	55	75
85	91	70	74
88	72	59	79

Specification

- Given: An n × n matrix X of numbers and an integer k.
- Search Space: Subsets S ⊂ X of size k where each element is from a different row of X.
- **Objective**: maximize sum of numbers in S.

$$\phi(S) = \sum_{s \in S} s$$

Optimality

The greedy approach of choosing largest within each row is optimal.

Another Variation

Now you can only choose one from each row/column.

95	83	80	77
62	65	55	75
85	91	70	74
88	72	59	79

Specification

- Given: An n × n matrix X of numbers and an integer k.
- Search Space: all subsets of entries of X of size k such that each element is in a different row/column of X.
 - **Objective**: maximize sum of numbers in subset.

$$\phi(S) = \sum_{s \in S} s$$

Greedy is not Optimal

The optimal solution is: 80 + 75 + 91 + 88 = 334

95	83	80	77
62	65	55	75
85	91	70	74
88	72	59	79

Main Idea

For some problems, a greedy approach is guaranteed to find the optimal solution. For other problems, it is not.

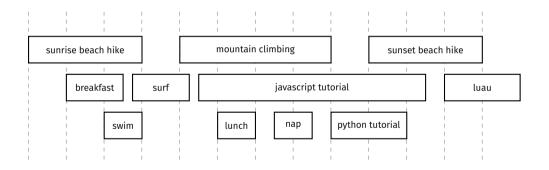
Main Idea

Coming up with a greedy algorithm is usually simple – proving that it finds the optimal may not be so easy.

Lecture 9 | Part 4

Activity Selection Problem

Vacation Planning



Formalized

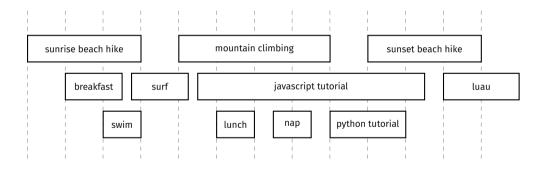
- This is called the activity selection problem.
- **Given**: a set of start/finish times (s_i, f_i) for *n* events
- Search Space: all schedules S with non-overlapping events
 - Format: S is a set of event indices e_1, e_2, \dots, e_k
- Objective: maximize |S| (number of events)

$$\phi(S) = |S|$$

Greedy Strategies

- There are several strategies we might call "greedy".
- Approach #1: in order of duration, shortest events first.

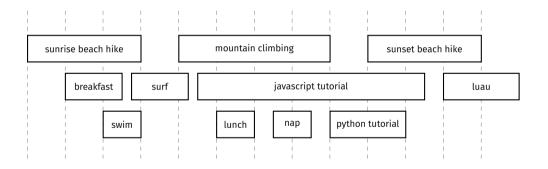
In Order of Duration



Greedy Strategies

Approach #2: in order of start time.

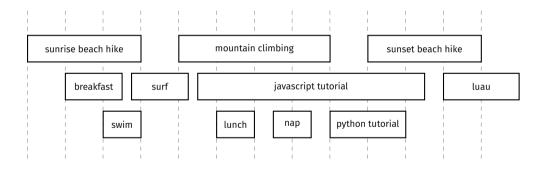
In Order of Start Time



Greedy Strategies

Approach #3: in order of finish time.

In Order of Finish Time



In Order of Finish Time

- Choose event with earliest finish time as first event.
- Choose subsequent events in order of finish time.
 - provided that they are non-overlapping.
- This is guaranteed to find global optimum.
- But how do we know this?

Lecture 9 | Part 5

Exchange Arguments

Convincing Yourself

- Designing a greedy algorithm is usually easy.
- It can be hard to convince yourself that it is optimal.
- Now, one proof technique: exchange arguments.

First: Proving Non-Optimality

To show that a strategy is non-optimal, find a counterexample.

Proving Optimality

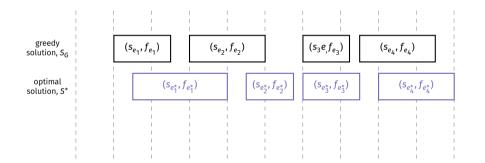
There may be many optimal solutions – we want to show that the greedy solution S_G is always one of them.

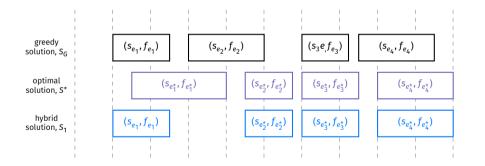
Exchange Arguments

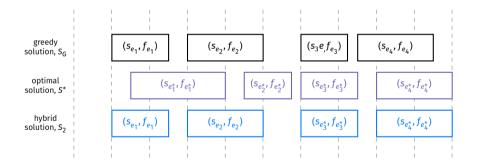
- Start with an arbitrary optimal solution, S*.
- Make a **chain** of optimal solutions S^* , S_1 , S_2 , ..., S_G
- At every step from S_{k-1} to S_k:

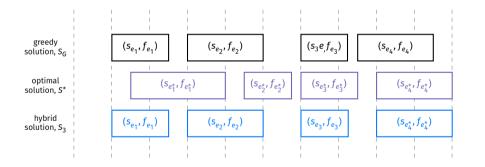
 construct solution S_k by exchanging part of S_{k-1} with S_G
 argue that S_k is valid¹
 - argue that S_k^{κ} is also optimal
- Proves S_G is optimal, as $\phi(S^*) = \phi(S_1) = \phi(S_2) = \dots = \phi(S_G)$

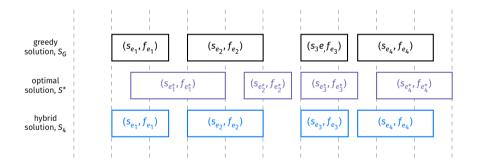
¹It is part of the search space and meets all constraints.











Take an arbitrary optimal solution S^* . Suppose it is different from the greedy solution, S_G (as otherwise we're done).

If it's different, it has to be different *somewhere*. Let's look at the first event in *S*^{*} that is not in *S*; call this the *i*th event in *S*^{*}.

We'll exchange the *i*th event in S^* with the *i*th event in S_G , but we have to be a little careful: what if $|S^*| > |S_G|$, so that it's possible that S_G has no *i*th element? So there are two cases: $i \le |S_G|$ and $i > |S_G|$.

First case: $i \leq |S_G|$. Then exchange the *i*th event in S^{*} with the *i*th event in S_G, creating a new solution S'.

This is **valid**: the event from S_G cannot overlap with any of the events in S^* , since the previous i - 1 events in S^* are the same as in S_G (and they didn't overlap), and the finish time of the greedy event is \leq the finish time of event it is replacing, so it cannot overlap with the remaining events.

It is also **optimal**, since $|S'| = |S^*|$.

Second case: $i > |S_G|$. This means that there is at least one "extra" event in S^{*} than in S_G .

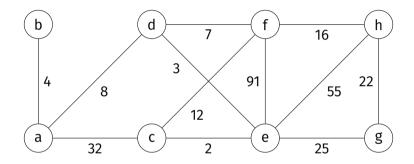
But this cannot happen: this extra event does not overlap with the events in S_G (since S_G is equal to the first i - 1 elements of S^* , and the "extra" event doesn't overlap with them). Its finish time is larger than any event in S_G . So the greedy approach would have included this event. Thus this case is not possible.

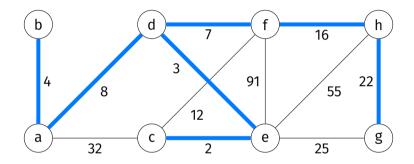
In either case, S' is a valid optimal schedule.

 S^* and S_G can differ in only a finite number of places; therefore, repeating this procedure a finite number of times produces a chain of optimal solutions where each solution is more similar to S_G . The chain terminates when S_G is reached, which shows that S_G is optimal $(|S_G| = |S^*|)$.

Lecture 9 | Part 6

Minimum Spanning Trees

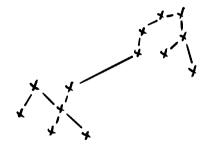




MSTs and Clustering

× × × × * × * × * ×

MSTs and Clustering



Minimum Spanning Trees

• **Given**: a weighted graph $G = (V, E, \omega)$, where $\omega : E \rightarrow \mathbb{R}$.

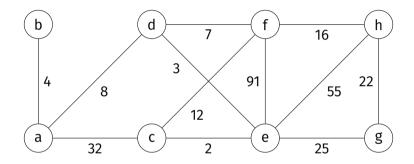
Search Space: all spanning trees T = (V, E'), where E' ⊂ E.

Objective: minimize total edge weight

$$\phi(T) = \sum_{e \in E'} \omega(e)$$

Kruskal's Algorithm

- Kruskal's Algorithm is a greedy algorithm for computing a MST.
- Idea: add edges one-by-one in order of weight.
 But only if edge does not make a cycle!



Kruskal's Algorithm (Pseudocode)

```
def kruskals(graph, weight):
    mst = UndirectedGraph()
    edges = sorted(graph.edges, key=weight)
    for (u, v) in edges:
        if u and v are not connected in mst:
            mst.add_edge(u, v)
    return met
```

return mst

Implementing Kruskal's Algorithm

```
def kruskals(graph, weight):
    mst = UndirectedGraph()
    edges = sorted(graph.edges, key=weight)
    dsf = DisjointSetForest()
    for i in range(len(graph.nodes)):
        dsf.make set()
    for (u, v) in edges:
        if dsf.find set(u) != dsf.find set(v):
            mst add_edge(u, v)
dsf union(u, v)
```

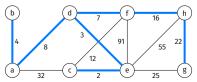
```
return mst
```

Optimality

- Kruskal's Algorithm find an optimal solution.
- We can prove this with an exchange argument.

Notes

- The greedy approach produces a valid spanning tree.
- Any two spanning trees have same number of edges.
- Removing an edge from a MST partitions nodes in two.



Exchange Idea

Suppose $e^* = (u, v)$ is in T^* , but not in T.

- ▶ We'll find a node *e* on the path from *u* to *v* in *T*.
- Make a new tree, T', by taking T*, removing e*, replacing it with e.

Exchange Argument

Let T^* be any minimum spanning tree, and let T_G be a tree produced by Kruskal's algorithm. Suppose that T^* and T_G are different, and let $e^* = (u, v)$ be an edge in T^* that is not in T_G .

Consider the path from u to v in T_G . Adding e^* to T_G would create two different paths from (u, v), and thus a cycle. Let (A, B) be the cut produced if e^* were removed from T^* , and let e be an edge along the cycle that crosses the cut (A, B) (there must be at least one).

We will exchange e^* in T^* for the edge e.

Exchange Argument

First, this will create a **valid** spanning tree. Removing e^* in T^* breaks the tree into two connected components with disjoint node sets A and B. Since e crosses (A, B), adding it will re-connected the disconnected components, and thus form a spanning tree, T'.

Second, the new tree is **also optimal**. We claim that $\omega(e') \ge \omega(e)$. At the time e' was considered by Kruskal's, it was rejected because it would create a cycle. Meaning that edge e was already added, implying that $\omega(e) \le \omega(e^*)$. As such, replacing e^* with e can only decrease or maintain² the total edge weight. Thus T' must be optimal.

Repeat this process, creating a chain of trees T^* , T_1 , T_2 , ..., T_G . Since each tree is optimal, T_G is as well.

²In fact, it must maintain. Decreasing would contradict fact that T^* is optimal.

Lecture 9 | Part 7

Designing Greedy Algorithms

Designing Algorithms

When do we know to use a greedy algorithm?

It isn't always obvious.

A Pattern

- Our examples have a common pattern: sort by some attribute, then loop through.
 - Number grid: take numbers in descending order.
 - Activities: take activities in increasing order of finish time.
 - MST: take edges in increasing order of weight.
- This is a new justification for value of sorting.
- Suggestion: when tackling a problem, try sorting first.

Greedy Approximations

- A greedy algorithm can be useful, even if not guaranteed to produce optimal answer.
- Especially true if exact algorithms are slow.
- Example: k-means clustering (Lloyd's algorithm)

k-means Problem

- **Given**: *n* data points X in \mathbb{R}^d , parameter k.
- Search Space: all clusterings C = {X₁,...,X_k} of X into k disjoint sets.
- **Objective function**: minimize

$$\phi(C) = \sum_{i=1}^{k} \sum_{x \in X_i} (x - \operatorname{mean}(X_i))^2$$

Greedy Algorithm

- Lloyd's algorithm (a.k.a., the "k-means algorithm") is a greedy algorithm for minimizing the k-means objective.
- Start with *k* centroids, μ_1, \dots, μ_k .
- At each step, let X_i be set of points closest to μ_i, update μ_i to be mean(X_i), repeat until convergence.
- Each step decreases value of objective function.

Optimality

- Lloyd's algorithm is not guaranteed to find optimum.
- Then again, no feasible algorithm is.
- Used in practice because it is fast and "good enough".