
Lecture 8 | Part 1

Today’s Lecture

Disjoint Sets

▶ Often need to keep a collection of disjoint sets.
▶ Example: {{4, 6, 2, 0}, {1, 3}, {5}}

▶ May need to union disjoint sets.

▶ May need to check if two items are in same set.

Use Case

▶ We are given a stream of nodes, edges.

▶ Want to keep track of CCs at every step.

▶ BFS/DFS take Θ(𝑉 + 𝐸) time; efficient to compute
CCs once, but then need to recompute.

Use Cases

▶ Used in Kruskal’s algorithm for MST.

▶ Used in single linkage clustering.

▶ Used in Tarjan’s algorithm to find LCA in a tree.

Disjoint Sets, Abstractly

▶ A disjoint sets ADT represents a collection of
disjoint sets.
▶ Example: {{4, 6, 2, 0}, {1, 3}, {5}}

▶ Supports three operations:
▶ .make_set(), .find_set(x), .union(x, y)

▶ Sometimes called a Union-Find data type.

Assumption

▶ Elements are consecutive integers.
▶ Example: {{4, 6, 2, 0}, {1, 3}, {5}}

▶ Not really a limitation.
▶ Keep dictionary mapping, e.g., string ids to integers.

.make_set()

▶ Create a new singleton set.

▶ Element “id” automatically
inferred, returned.

»> ds = DisjointSet()
»> ds.make_set()
0
»> ds.make_set()
1
»> ds.make_set()
2

.union(x, y)

▶ Union sets containing x and y.

▶ Updates data structure in-place.

»> ds = DisjointSet()
»> ds.make_set()
0
»> ds.make_set()
1
»> ds.make_set()
2
»> ds.union(0, 2)

.find_set(x)

▶ Find representative of set containing x.

▶ Representative is arbitrary, but same
for all items in same set.

▶ Used to test if two nodes in same set.

▶ Guaranteed to not change unless a
union is performed.

»> # ds is {{0}, {1}, {2}}
»> ds.union(0, 2)
»> ds.find_set(0)
0
»> ds.find_set(2)
0
»> ds.union(0, 1)
»> ds.find_set(0)
1
»> ds.find_set(1)
1
»> ds.find_set(2)
1

Today’s Lecture

▶ How do we implement a disjoint set?

▶ We’ll introduce the disjoint set forest data
structure.

▶ Talk about two heuristics that make it very
efficient.

Lecture 8 | Part 2

Disjoint Set Forests

Implementing Disjoint Sets

▶ First idea: a list of sets.

[{2, 4, 3}, {1, 5}, {0}]

▶ Problem: unioning two sets takes time linear in
size of smaller.

Looking Ahead

▶ We’ll design data structure so that all operations,
including union, take (practically) Θ(1) time.

The Idea

▶ Represent collection as a
forest of trees, called a
Disjoint Set Forest.

▶ Example:
{{2, 4, 3, 6}, {1, 5}, {0}}

▶ Not unique!

Tree Structure

▶ Each node has reference to parent.

▶ Not a binary tree!

Representing Forests

▶ We have several choices:

▶ 1) Each node is own object with parent attribute.

▶ 2) Keep a list containing parent of each element.

Approach #1

class DSFNode:

def __init__(self, parent=None):
self.parent = parent

▶ make_set becomes DSFNode()

▶ find_set and union are functions, not methods.

▶ They accept DSFNode objects.

Assumption

▶ Now, assume that the elements of the disjoint
set are consecutive integers 0, 1, … , 𝑛 − 1.

▶ We can store the tree in a single list of size 𝑛.

▶ arr[i] is parent of element 𝑖:

[2, 0, None, 2, 4]

Approach #2

class DisjointSetForest:

def __init__(self):
self._parent[i] is
parent of element i
self._parent = []

def make_set(self):
...

def find_set(self, x):
...

def union(self, x, y):
...

Implementation Notes

▶ We’ll use the second approach.

▶ We can use second representation because
elements are consecutive integers.

▶ For cache locality, use numpy array, not list.

.make_set

def make_set(self):
infer new element's ”id”
x = len(self._parent)
self._parent.append(None)
return x

»> dsf = DisjointSetForest()
»> dsf.make_set()
0
»> dsf.make_set()
1
»> dsf.make_set()
2
»> dsf._parent
[None, None, None]

.find_set(x)

▶ Idea: use the “root” as the representative.

Exercise

Implement .find_set(x) recursively.

.find_set

def find_set(self, x):
if self._parent[x] is None:

return x
else:

return self.find_set(self._parent[x])

.union(x, y)

▶ Idea: make one root the parent of the other.

.union(x, y)

def union(self, x, y):
x_rep = self.find_set(x)
y_rep = self.find_set(y)
if x_rep != y_rep:

self._parent[y_rep] = x_rep

»> # dsf is {{0}, {1}, {2}}
»> dsf._parent
[None, None, None]
»> dsf.union(0, 1)
»> dsf._parent
[None, 0, None]
»> dsf.union(1, 2)
»> dsf._parent
[None, 0, 0]

Analysis

▶ .make_set: Θ(1) time1

▶ .union: depends on .find_set

▶ .find_set: 𝑂(ℎ), where ℎ is height of tree

1Amortized, since we’re using a dynamic array. But truly Θ(1) with an
over-allocated static array or in the object representation.

Tree Height

▶ Trees can be very deep, with ℎ = 𝑂(𝑛).
▶ .find_set and .union can take Θ(𝑛) time!

▶ Example:
dsf is {{0}, {1}, {2}, {3}, {4}}
»> dsf.union(1, 0)
»> dsf.union(2, 1)
»> dsf.union(3, 2)
»> dsf.union(4, 3)

Tree Height

▶ But trees can also be shallow, with ℎ = 𝑂(1).

▶ Example:
dsf is {{0}, {1}, {2}, {3}, {4}}
»> dsf.union(0, 1)
»> dsf.union(1, 2)
»> dsf.union(2, 3)
»> dsf.union(3, 4)

Lecture 8 | Part 3

Path Compression and Union-by-Rank

The Bad News

▶ We saw that the tree can become very deep.

▶ In worst case, .find_set and thus .union take
Θ(𝑛) time.

Heuristics

▶ Now: two heuristics helping trees stay shallow.

▶ Union-by-Rank and Path Compression

▶ Together, these result in a massive speed up.

Path Compression

▶ Idea: if we find a long path during .find_set,
“compress” it to (possibly) reduce height.

.find_set

def find_set(self, x):
if self._parent[x] is None:

return x
else:

root = self.find_set(self._parent[x])
self._parent[x] = root
return root

Union-by-Rank

▶ Should we .union(x, y) or .union(y, x)?

Union-by-Rank

▶ Placing deeper tree under shallower tree
increases height by one.

▶ But placing shallower tree under deeper tree
doesn’t increase height.

▶ Idea: always place shallower tree under deeper.

Rank

▶ We need to keep track of height (rank) of each
tree.

▶ Store rank attribute.

▶ rank[i] is height2 of tree rooted at node 𝑖.

2Exactly the height if path compression isn’t used, but upper bound if it is.

Rank
class DisjointSetForest:

def __init__(self):
self._parent = []
self._rank = []

def make_set(self):
infer new element's ”id”
x = len(self._parent)
self._parent.append(None)
self._rank.append(0)
return x

.union

def union(self, x, y):
x_rep = self.find_set(x)
y_rep = self.find_set(y)

if x_rep == y_rep:
return

if self._rank[x_rep] > self._rank[y_rep]:
self._parent[y_rep] = x_rep

else:
self._parent[x_rep] = y_rep
if self._rank[x_rep] == self._rank[y_rep]:

self._rank[y_rep] += 1

Note

▶ With path compression, rank is no longer exactly
the height – it is an upper bound.

▶ But this is good enough.

Lecture 8 | Part 4

Analysis

Analysis of DSF

▶ A DSF with path compression and union-by-rank
ensures trees are shallow.

▶ How does this affect runtime?

Answer

▶ Assuming union-by-rank and path compression...

▶ In a sequence of 𝑚 operations, 𝑛 of which are
.make_sets...

▶ Amortized cost of a single operation is 𝑂(𝛼(𝑛)).

▶ 𝛼 is the inverse Ackermann function, and it is
essentially constant.

Inverse Ackermann

𝛼(𝑛) 𝑛

0 𝑛 ∈ [0, 1, 2]
1 𝑛 = 3
2 𝑛 ∈ [4,… , 7]
3 𝑛 ∈ [8,… , 2047]
4 𝑛 ∈ [2048,… , 22048] and beyond

Proof

▶ The formal analysis is quite involved.

▶ But we’ll provide some intuition.

Union-by-rank Alone

▶ Union-by-rank alone ensures height is 𝑂(log 𝑛).

dsf is {{0}, {1}, {2}, {3}}
»> dsf.union(0, 1)
»> dsf.union(2, 3)
»> dsf.union(0, 2)

Union-by-rank Alone

▶ Union-by-rank alone ensures .find_set is
𝑂(log 𝑛).

Path Compression + U-by-R

▶ With path compression, individual .find_set
calls can take 𝑂(log 𝑛).

▶ But they massively improve subsequent calls.
▶ For other nodes, too!

Lecture 8 | Part 5

Epilogue: pytest

Testing Your Code

▶ Testing code is essential (for homework and real
life).

▶ Consider it to be part of the problem.

▶ How do we test Python code?

Approach #1: Run it by hand

▶ Write your code.

▶ Open up a Python interpreter.

▶ Type in a few examples, see if code works.

▶ It doesn’t work. Repeat.

Downsides

▶ You often run the same test over and over again.

▶ You have to type it in every time.

▶ This is annoying.

Main Idea

If something is annoying, you’ll avoid doing it.
Spend the time to make things less annoying.

Approach #2: Doctests

def add(x, y):
”””Add two numbers.

»> add(1, 2)
3
»> add(2, 2)
4
»> add(1, -1)
0
”””
return x + y

Doctests

▶ Useful, but brittle.
▶ Relies on string comparison.

Approach #2: Unit Testing
Frameworks

▶ Create a file that only includes tests.

▶ Write test for each way that code will be used.
▶ Example: for a stack, write test for push, pop, peek.

▶ Try to anticipate “corner cases”.

▶ Write the tests before you write the code.

Unit Testing in Python

▶ unittest: built-in module for unit testing

▶ pytest: nicer to use, more “modern”

import stack
import pytest

def test_push_then_peek():
s = stack.Stack(10)
s.push(1)
s.push(5)
s.push(3)
assert s.peek() == 3

def test_push_then_pop():
s = stack.Stack(10)
s.push(1)
s.push(5)
s.push(3)
assert s.pop() == 3

Debugging

▶ Testing and debugging go hand-in-hand.

▶ Should know how to use the Python debugger.

Unit Testing Guidelines

▶ Should test “public” interface, not “private”
implementation details.

▶ Should “exercise” all of the code (coverage).

▶ Write the tests before the code.

