

Lecture 7 | Part 1

Approximate Nearest Neighbors

Last Time

We saw kd-trees.

Enable fast nearest neighbor queries.
 O(log n) time in low dimensions.

Why, exactly?

- Why do we need the exact NN?
- Often something close would do.
- Especially if not confident in distance measure.
 As is the case in high dimensions.
- Maybe this can be done faster?

ANN

Given: A set of points and a query point, *p*.

Return: An approximate nearest neighbor.

k-D ANNs

So far, our k-d trees find **exact** nearest neighbor.

- But there's a very simple way to do ANN query.
- Idea: prune more aggressively.

Before

- Let d_{nn} be distance from query point to best so far.
- Let d_{bound} be distance from query point to boundary.
- Search branch only if $d_{\text{bound}} < d_{\text{nn}}$.

Now

- ► Take $\alpha \ge 1$ as a parameter.
- Search branch only if $d_{\text{bound}} < d_{\text{nn}}/\alpha$.
- Idea: make it easier to toss out branch.
- ► If α = 1; exact search.
- If $\alpha > 1$; approximate, faster as α grows.

Theory

X

Let q be exact NN, let q_{ann} be that found by this strategy.

Then:

 $d(p,q_{\mathsf{ann}}) \leq \alpha \cdot d(p,q)$

Now

Another approach for approximate nearest neighbors: Locality Sensitive Hashing (LSH).

Lecture 7 | Part 2

Implementing a NN Grid

Grids

- Given input point p, want quick way to find nearby points.
- Idea: divide space into cells using grid.
- Find cell containing *p*, search it.
- How would we implement this?

- Each point (x, y) given cell id: ([x], [y])
 Example: (1.2, 6.7) given cell id (1, 6).
- Store (x, y) in dictionary with cell id as key.
 Discretization allows multiple points in same cell.
 Store collisions in list.
- Generalizes naturally to *d*-dimensions.

```
class NNGrid:
```

```
def init (self, width):
    self.width = width
    self.cells = {}
def cell id(self, p):
    p = np_asarrav(p)
    cell id = np.floor(p / self.width).astype(int)
    return tuple(cell id)
def insert(self. p):
    """Insert p into the grid."""
    cell id = self.cell id(p)
    if cell id not in self.cells:
        self.cells[cell id] = []
    self.cells[cell id].append(p)
```

```
def points_in_cell(self, p):
    cell_id = self.cell_id(p)
    if cell_id not in self.cells:
        return []
    points_in_cell = self.cells[cell_id]
    # turn into an array
    return np.vstack(points_in_cell)
```

. . .

def query(self, p):
 return brute_force_nn(self.points_in_cell(p), p)

Note

This may fail – NN could be in different cell.

Problems

▶ In *d* dimensions, cell id has *d* entries.

 $cell-id(p) = ([x_1/w], [x_2/w], ..., [x_d/w])$

All entries must be **exactly** the same for two points to have same cell id.

This is very unlikely. Most cells are empty or contain one point.

High-Dimensional Cuboids

One "fix": increase cell width parameter.

- Suppose we want it to be likely that any points within distance r are in same cell.
- Then cell width should be $\approx 2r$.

High-Dimensional Cuboids

- But a *d*-dimensional cuboid of width 2*r* can contain points at distance $2\sqrt{dr}$ from one another!
- For even modest r, the whole data set is in one cell.

Main Idea

Dividing into a grid of cuboids fails in high dimensions. Either the cells are empty, or contain everything, depending on the width!

Lecture 7 | Part 3

A Randomized "Grid"

A Randomized "Grid"

Idea: Instead of axis-aligned grid, divide into cells using k < d random directions.</p>

(2,-1)

Cell Shape

- Cells are no longer d-dimensional cuboids.
- They are random k-dimensional polytopes.

Question

Why is this better? We'll see in the next sections.

Projection

 \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} How do we determine which cell a point lies in?

|| Û|| (|x|| cos O

Cell IDs

▶ Pick *k* random unit vectors, $\vec{u}^{(1)}$, ..., $\vec{u}^{(k)} \in \mathbb{R}^d$.

Pick a width parameter, w.

• Given any point \vec{p} , its cell id is¹:

$$\operatorname{cell-id}(\vec{p}) = \left(\left\lfloor \frac{\vec{u}^{(1)} \cdot \vec{p}}{w} \right\rfloor, \left\lfloor \frac{\vec{u}^{(2)} \cdot \vec{p}}{w} \right\rfloor, \dots, \left\lfloor \frac{\vec{u}^{(k)} \cdot \vec{p}}{w} \right\rfloor, \right)$$

¹use same width and unit vectors for all points

Example

Quick Cell-ID Calculation

▶ Place $\vec{u}^{(1)}, ..., \vec{u}^{(k)}$ into a matrix:

$$U = \begin{pmatrix} \leftarrow & (\vec{u}^{(1)})^T \rightarrow \\ \leftarrow & (\vec{u}^{(2)})^T \rightarrow \\ \vdots & \vdots & \vdots \\ \leftarrow & (\vec{u}^{(k)})^T \rightarrow \end{pmatrix} P$$

Then cell-id(\vec{p}) = entrywise-floor($U\vec{p}/w$)

Generating Random Unit Vectors

def gaussian_projection_matrix(k, d):
 X = np.random.normal(size=(k, d))
 U = X / np.linalg.norm(X, axis=1)[:,None]
 return U

class NNProjectionGrid

```
def __init__(self, projection_matrix, width):
    self.width = width
    self.projection_matrix = projection_matrix
    self.cells = {}
```

```
def cell_id(self, p):
    projection = self.projection_matrix @ p
    cell_id = np.floor(projection / self.width)
    return tuple(cell_id.astype(int))
```

insert, query, points_in_cell same as for NNGrid

But wait...

In high dimensions, still very unlikely for cell to contain >1 point.

Idea: banding. Try, try again.

Build multiple NNProjectionGrids with different random projections.

Find points_in_cell for each, pool them together.

Multiple Random Projections

Locality Sensitive Hashing

- This idea (multiple random projections) is an example of Locality Sensitive Hashing (LSH).
- ▶ We'll explore it more in the next section.


```
for randomized_grid in self.randomized_grids:
randomized_grid.insert(p)
```

. . .

```
def query_close(self, p):
nearby = []
for randomized_grid in self.randomized_grids:
    points_in_cell = randomized_grid.points_in_cell(p)
    nearby.append(points_in_cell)
return np.vstack(nearby)
```

```
def query_nn(self, point):
results = self.query_close(point)
pool = np.vstack([r for r in results])
if len(pool) == 0:
    raise ValueError('No points nearby.')
return brute_force_nn(pool, point)
```

. . .

Parameters

- l: number of randomized "grids"
- k: number of random directions in each "grid"
- w: bin width

Tuning Parameters

- Choose so that .query_close returns a small # of points.
- If # is very small (or zero), either:
 - increase w or ł
 - decrease k

Note

- This is an approximate NN technique!
- May not find **the** NN.
- May not return anything!

Lecture 7 | Part 4

Theory of Locality Sensitive Hashing

Why does LSH work?

Two approaches to understanding LSH.

- ▶ 1) Hashing view.
- > 2) Dimensionality reduction view.

Standard Hashing

A hash function $h : \mathcal{X} \to \mathbb{Z}$ takes in an object from \mathcal{X} and returns a bucket number.

Standard Hashing

- **Collision**: two different objects have same hash.
- Usually, collisions are bad.
- Want similar things to have very different hashes.

Locality Sensitive Hashing

But in NN search, we want "close" items to be in the same bucket (have same hash).

 "Far" items should be in different buckets (have different hash).

Locality Sensitive Hashing

Let r be a distance we consider "close".

- Let cr (with c > 1) be a distance we consider "far".
- Suppose *H* is a **family** of hash functions.

LSH Family

H is an LSH family if when h is randomly drawn from H:

$$\mathbb{P}(h(x) = h(y)) \ge p_1 \quad \text{when } d(x, y) \le r \\ \mathbb{P}(h(x) = h(y)) \le p_2 \quad \text{when } d(x, y) \ge cr$$

where $p_1 > p_2$.

Main Idea

If x and y are close, the probability that they hash to the **same** bin is not too small. If they are far, the probability is not too large.

Example: Random Projections

- We have seen one LSH family: random projections followed by binning.
- *H* has infinitely-many hash functions, one for each direction \vec{u} :

$$h_{\vec{u}}(\vec{p}) = \left\lfloor \frac{\vec{u} \cdot \vec{p}}{w} \right\rfloor,$$

Example: Random Projections

Suppose a random hash function *h* is chosen.

Claim:

$$\mathbb{P}(h(x) = h(y)) \ge \frac{1}{2} \quad \text{when } d(x, y) \le w/2$$
$$\mathbb{P}(h(x) = h(y)) \le \frac{1}{3} \quad \text{when } d(x, y) \ge 2w$$

Intuition

Proof: Close

In worst case, grid is orthogonal to line between points.

Proof: Far

Only possible if grid is close to parallel.

Proof: Far

► Angle must be below 30°.

Amplification

Lots of points have same hash.

To be more selective, randomly select k hash functions for cell id.

$$cell-id(x) = (h_1(x), h_2(x), ..., h_k(x))$$

Example: Random Projections

In case of random projections.

$$\operatorname{cell-id}(\vec{p}) = \left(\underbrace{\left\lfloor \frac{\vec{u}^{(1)} \cdot \vec{p}}{W} \right\rfloor}_{h_1}, \underbrace{\left\lfloor \frac{\vec{u}^{(2)} \cdot \vec{p}}{W} \right\rfloor}_{h_2}, \dots, \underbrace{\left\lfloor \frac{\vec{u}^{(k)} \cdot \vec{p}}{W} \right\rfloor}_{h_k} \right)$$

Collision Probability

Remember:

$$P(h(x) = h(y)) \ge p_1$$
 if close.
 $P(h(x) = h(y)) \le p_2$ if far.

► Collision occurs if $h_i(x) = h_i(y) \forall i \in \{1, ..., k\}$.

Probability of collision...
if close: ≥ p₁^k
if far: ≤ p₂^k

Choosing *k*

▶ Want prob. of far points colliding to be small.

► Say, 1/*n*.

Set
$$p_2^k = 1/n$$
. Then

$$k = \log_{p_2} \frac{1}{n} = -\frac{\log n}{\log p_2}$$

Main Idea

We can use $k = \Theta(\log n)$ hash functions.

Main Idea

When using random projections as hash functions, we can use $k = \Theta(\log n)$ directions. This is usually much less than d.

But wait...

- Probability of close points colliding is p_1^k .
- Let $p_1 = p_2^{\rho}$. We'll have $\rho < 1$, since $p_2 < p_1$.

Since
$$p_2^k = \frac{1}{n}$$
, we have $p_1^k = \frac{1}{n^p}$.

This is very small.

Banding

- Before: one set of *k* hash functions.
- With banding: keep l sets (bands) of k hash functions.
- To query NN of p, find points that are in the same cell as p in any of the bands.

Banding

Probability of at least one match:

Want this to be ≈ 1, so:

$$l = n^{\rho}$$

Main Idea

We should set the number of bands to be n^{ρ} . ρ depends on *c*, and is usually not small. For random projections, $\rho \approx .63$.

Analysis

- How efficient is LSH?
- Worst case, everything hashes to same bin: O(n).
- In practice, much better.
- Requires **a lot** of memory. $\Theta(ln)$.

Other Distances

- LSH works for many different similarity measures.
- Random projections are for Euclidean distances.
- But other hashing approaches work for cosine distance, Jaccard distance, etc.

Lecture 7 | Part 5

The Johnson-Lindenstrauss Lemma

Why does LSH work?

Two approaches to understanding LSH.

- ▶ 1) Hashing view.
- > 2) Dimensionality reduction view.

Main Idea

The **Johnson-Lindenstrauss Lemma** says that, given *n* points in \mathbb{R}^d , you can reduce the dimensionality to $k \approx \log n$ while still preserving relative distances by randomly projecting onto a set of *k* unit vectors.

Claim

The **Johnson-Lindenstrauss Lemma** (Informal). Let X be a set of n points in \mathbb{R}^d . Let U be a matrix whose $k = O(\log(n)/\epsilon^2)$ rows are Gaussian random vectors in \mathbb{R}^d . Then for every $\vec{x}, \vec{y} \in X$,

 $\|\vec{x}-\vec{y}\| \leq (1\pm\epsilon)\|U\vec{x}-U\vec{y}\|$
LSH and J-L

- In LSH, we use $k = O(\log n)$ hash functions.
- If these hash functions are random projections, the J-L lemma tells that distances are largely preserved.

A Different View of LSH

- Given $p \in \mathbb{R}^d$, randomly project to \mathbb{R}^k with $k \approx \log n$.
- Let new coordinates be $(y_1, y_2, ..., y_k)$.
- Use standard grid to assign cell id.

Main Idea

LSH (for Euclidean distances) (without banding) can be viewed as dimensionality reduction by random projections, followed by binning into a standard grid.

Lecture 7 | Part 6

NN in Practice

In Practice

- LSH is an important idea.
- Good performance in practice.
- But heuristic approaches are often faster.
- faiss and annoy, among others.

Demo

A demo notebook is available at dsc190.com

Other Approaches

- Hierarchical k-means.
- Product quantization.
- Navigable small worlds.