DSC 190

Lecture $7 \mid$ Part 1
Approximate Nearest Neighbors

Last Time

- We saw kd-trees.
- Enable fast nearest neighbor queries.
- $\Theta(\log n)$ time in low dimensions.

Why, exactly?

- Why do we need the exact NN?
- Often something close would do.
- Especially if not confident in distance measure.
$>$ As is the case in high dimensions.
- Maybe this can be done faster?

ANN

Given: A set of points and a query point, p.
Return: An approximate nearest neighbor.

k-D ANNs

- So far, our k-d trees find exact nearest neighbor.
- But there's a very simple way to do ANN query.
- Idea: prune more aggressively.

Before

Let d_{nn} be distance from query point to best so far.
Let $d_{\text {bound }}$ be distance from query point to boundary.
$>$ Search branch only if $d_{\text {bound }}<d_{\mathrm{nn}}$.

Now

- Take $\alpha \geq 1$ as a parameter.
$>$ Search branch only if $d_{\text {bound }}<d_{\mathrm{nn}} / \alpha$.
- Idea: make it easier to toss out branch.
- If $\alpha=1$; exact search.
- If $\alpha>1$; approximate, faster as α grows.

Theory

α

- Let q be exact $N N$, let $q_{\text {ann }}$ be that found by this strategy.
- Then:

$$
d\left(p, q_{\text {ann }}\right) \leq \alpha \cdot d(p, q)
$$

Now

- Another approach for approximate nearest neighbors: Locality Sensitive Hashing (LSH).

DSC 190
Lecture 7 | Part 2
Implementing a NN Grid

Grids

- Given input point p, want quick way to find nearby points.
- Idea: divide space into cells using grid.
\Rightarrow Find cell containing p, search it.
- How would we implement this?

$$
\{(2.1):[(2.7,1.1),(2.5,1.9),]\}
$$

- Each point (x, y) given cell id: ($[x]$, $\lfloor y])$
\rightarrow Example: $(1.2,6.7)$ given cell id $(1,6)$.
- Store (x, y) in dictionary with cell id as key.
$>$ Discretization allows multiple points in same cell.
- Store collisions in list.
- Generalizes naturally to d-dimensions.
class NNGrid:

```
def __init__(self, width):
    self.width = width
    self.cells = {}
def cell_id(self, p):
    p = np.asarray(p)
    cell_id = np.floor(p / self.width).astype(int)
    return tuple(cell_id)
def insert(self, p):
    """Insert p into the grid."""
    cell_id = self.cell_id(p)
    if cell_id not in self.cells:
        self.cells[cell_id] = []
    self.cells[cell_id].append(p)
```

def points_in_cell(self, p):
cell_id = self.cell_id(p)
if cell_id not in self.cells:
return []
points_in_cell = self.cells[cell_id]
\# turn into an array
return np.vstack(points_in_cell)
def query (self, p):
return brute_force_nn(self.points_in_cell(p), p)

Note

- This may fail - NN could be in different cell.

Problems

- In dimensions, cell id has d entries.

$$
\operatorname{cell-id}(p)=\left(\left[x_{1} / w\right\rfloor,\left[x_{2} / w\right\rfloor, \ldots,\left\lfloor x_{d} / w\right\rfloor\right)
$$

- All entries must be exactly the same for two points to have same cell id.
- This is very unlikely. Most cells are empty or contain one point.

High-Dimensional Cuboids

- One "fix": increase cell width parameter.
- Suppose we want it to be likely that any points within distance r are in same cell.
- Then cell width should be $\approx 2 r$.

High-Dimensional Cuboids

- But a d-dimensional cuboid of width $2 r$ can contain points at distance $2 \sqrt{d r}$ from one another!

$$
r=2 \quad w=4
$$

- For even modest r, the whole data set is in one cell.

Main Idea

Dividing into a grid of cuboids fails in high dimensions. Either the cells are empty, or contain everything, depending on the width!

DST 190
Lecture 7 | Part 3
A Randomized "Grid"

A Randomized "Grid"

Idea: Instead of axis-aligned grid, divide into cells using $k<d$ random directions.

Cell Shape

- Cells are no longer d-dimensional cuboids.
- They are random k-dimensional polytopes.

Question

Why is this better? We'll see in the next sections.
$\frac{d^{2}}{d t^{2}} x \quad \ddot{x} \quad$ Projection
How do we determine which cell a point lies in?

$$
\left\lfloor\frac{\hat{u}^{(1)} \cdot \vec{x}}{w}\right\rfloor=\|\hat{u}\|\|\vec{x}\| \cos \theta
$$

Cell IDs

- Pick k random unit vectors, $\vec{u}^{(1)}, \ldots, \vec{u}^{(k)} \in \mathbb{R}^{d}$.
- Pick a width parameter, w.
- Given any point \vec{p}, its cell id is ${ }^{1}$:

$$
\operatorname{cell-id}(\vec{p})=\left(\left\lfloor\frac{\vec{u}^{(1)} \cdot \vec{p}}{w}\right\rfloor,\left\lfloor\frac{\vec{u}^{(2)} \cdot \vec{p}}{w}\right\rfloor, \ldots,\left\lfloor\frac{\vec{u}^{(k)} \cdot \vec{p}}{w}\right\rfloor,\right)
$$

${ }^{1}$ use same width and unit vectors for all points

Example

Quick Cell-ID Calculation

Place $\vec{u}^{(1)}, \ldots, \vec{u}^{(k)}$ into a matrix:

$$
\left.U=\left(\begin{array}{ccc}
\leftarrow & \left(\vec{u}^{(1)}\right)^{T} & \rightarrow \\
\leftarrow & \left(\vec{u}^{(2)}\right)^{T} & \rightarrow \\
\vdots & \vdots & \vdots \\
\leftarrow & \left(\vec{u}^{(k)}\right)^{T} & \rightarrow
\end{array}\right) \right\rvert\, p
$$

- Then cell-id $(\vec{p})=$ entrywise-floor $(U \vec{p} / w)$

Generating Random Unit Vectors

def gaussian_projection_matrix(k, d):
X = np.random.normal(size=(k, d))

$$
U=X / n p . l i n a l g \cdot n o r m(X, \text { axis=1)[:,None }]
$$ return U

class NNProjectionGrid

```
def __init__(self, projection_matrix, width):
    self.width = width
    self.projection_matrix = projection_matrix
    self.cells = {}
def cell_id(self, p):
    projection = self.projection_matrix a p
    cell_id = np.floor(projection / self.width)
    return tuple(cell_id.astype(int))
# insert, query, points_in_cell same as for NNGrid
```


But wait...

- In high dimensions, still very unlikely for cell to contain >1 point.
> Idea: banding. Try, try again.
- Build multiple NNProjectionGrids with different random projections.
- Find points_in_cell for each, pool them together.

Multiple Random Projections

U_{1}

U_{2}

U_{3}

Locality Sensitive Hashing

- This idea (multiple random projections) is an example of Locality Sensitive Hashing (LSH).
- We'll explore it more in the next section.
class LocalitySensitiveHashing:

```
def __init__(self, l, k, d, w):-
    self.randomized_grids = []~ cell width
    for i in range(l):
    U = gaussian_projection_matrix(k, d)
        randomized_grid = NNProjectionGrid(U, w)
        self.randomized_grids.append(randomized_grid)
def insert(self, p):
    for randomized_grid in self.randomized_grids:
        randomized_grid.insert(p)
```

```
def query_close(self, p):
    nearby = []
    for randomized_grid in self.randomized_grids:
        points_in_cell = randomized_grid.points_in_cell(p)
        nearby.append(points_in_cell)
    return np.vstack(nearby)
def query_nn(self, point):
    results = self.query_close(point)
    pool = np.vstack([r for r in results])
    if len(pool) == 0:
        raise ValueError('No points nearby.')
    return brute_force_nn(pool, point)
```


Parameters

> l: number of randomized "grids"

- k : number of random directions in each "grid"
- w: bin width

Tuning Parameters

- Choose so that .query_close returns a small \# of points.
- If \# is very small (or zero), either:
- increase w or ℓ
- decrease k

Note

This is an approximate NN technique!

- May not find the NN.
- May not return anything!

$$
\text { DST } 190
$$

Lecture $7 \mid$ Part 4
Theory of Locality Sensitive Hashing

Why does LSH work?

- Two approaches to understanding LSH.

1) Hashing view.

- 2) Dimensionality reduction view.

Standard Hashing

- A hash function $h: \mathcal{X} \rightarrow \mathbb{Z}$ takes in an object from \mathcal{X} and returns a bucket number.

Standard Hashing

- Collision: two different objects have same hash.
- Usually, collisions are bad.
- Want similar things to have very different hashes.

Locality Sensitive Hashing

- But in NN search, we want "close" items to be in the same bucket (have same hash).
- "Far" items should be in different buckets (have different hash).

Locality Sensitive Hashing

- Let r be a distance we consider "close".
- Let cr (with c>1) be a distance we consider "far".
- Suppose H is a family of hash functions.

LSH Family

- H is an LSH family if when h is randomly drawn from H :

$$
\begin{array}{ll}
\mathbb{P}(h(x)=h(y)) \geq p_{1} \quad \text { when } d(x, y) \leq r \\
\mathbb{P}(h(x)=h(y)) \leq p_{2} \quad \text { when } d(x, y) \geq c r
\end{array}
$$

where $p_{1}>p_{2}$.

Main Idea

If x and y are close, the probability that they hash to the same bin is not too small. If they are far, the probability is not too large.

Example: Random Projections

- We have seen one LSH family: random projections followed by binning.
- H has infinitely-many hash functions, one for each direction \vec{u} :

$$
h_{\vec{u}}(\vec{p})=\left\lfloor\frac{\vec{u} \cdot \vec{p}}{w}\right\rfloor,
$$

Example: Random Projections

- Suppose a random hash function h is chosen.
- Claim:

$$
\begin{array}{ll}
\mathbb{P}(h(x)=h(y)) \geq \frac{1}{2} & \text { when } d(x, y) \leq w / 2 \\
\mathbb{P}(h(x)=h(y)) \leq \frac{1}{3} & \text { when } d(x, y) \geq 2 w
\end{array}
$$

Intuition

Proof: Close

- In worst case, grid is orthogonal to line between points.

Proof: Far

- Only possible if grid is close to parallel.

Proof: Far

- Angle must be below 30°.

Amplification

- Lots of points have same hash.
- To be more selective, randomly select k hash functions for cell id.

$$
\operatorname{cell}-\mathrm{id}(x)=\left(h_{1}(x), h_{2}(x), \ldots, h_{k}(x)\right)
$$

Example: Random Projections

- In case of random projections.

$$
\operatorname{cell-id}(\vec{p})=(\underbrace{\left|\frac{\vec{u}^{(1)} \cdot \vec{p}}{w}\right|}_{h_{1}}, \underbrace{\left.\frac{\vec{u}^{(2)} \cdot \vec{p}}{w} \right\rvert\,}_{h_{2}}, \ldots, \underbrace{\left.\frac{\vec{u}^{(k)} \cdot \vec{p}}{w}\right\rfloor}_{h_{k}})
$$

Collision Probability

> Remember:

$$
\begin{aligned}
& P(h(x)=h(y)) \geq p_{1} \text { if close. } \\
& P(h(x)=h(y)) \leq p_{2} \text { if far. }
\end{aligned}
$$

> Collision occurs if $h_{i}(x)=h_{i}(y) \forall i \in\{1, \ldots, k\}$.

- Probability of collision...
- if close: $\geq p_{1}^{k}$
- if far: $\leq p_{2}^{k}$

Choosing k

- Want prob. of far points colliding to be small.
- Say, 1/n.
- Set $p_{2}^{k}=1 / n$. Then

$$
k=\log _{p_{2}} \frac{1}{n}=-\frac{\log n}{\log p_{2}}
$$

Main Idea

We can use $k=\Theta(\log n)$ hash functions.

Main Idea

When using random projections as hash functions, we can use $k=\Theta(\log n)$ directions. This is usually much less than d.

But wait...

- Probability of close points colliding is p_{1}^{k}.

Let $p_{1}=p_{2}^{\rho}$. We'll have $\rho<1$, since $p_{2}<p_{1}$.

- Since $p_{2}^{k}=\frac{1}{n}$, we have $p_{1}^{k}=\frac{1}{n^{\rho}}$.
- This is very small.

Banding

- Before: one set of k hash functions.
- With banding: keep l sets (bands) of k hash functions.
- To query NN of p, find points that are in the same cell as p in any of the bands.

Banding

- Probability of at least one match:
$\underbrace{\frac{1}{n^{\rho}}}_{\text {collision in band } 1}+\underbrace{\frac{1}{n^{\rho}}}_{\text {collision in band } 2}+\ldots+\underbrace{\frac{1}{n^{\rho}}}_{\text {collision in band } \ell}=\frac{\ell}{n^{\rho}}$
- Want this to be ≈ 1, so:

$$
l=n^{\rho}
$$

Main Idea

We should set the number of bands to be $n^{\rho} . \rho$ depends on c, and is usually not small. For random projections, $\rho \approx .63$.

Analysis

- How efficient is LSH?
- Worst case, everything hashes to same bin: $O(n)$.
- In practice, much better.
- Requires a lot of memory. $\Theta(l n)$.

Other Distances

- LSH works for many different similarity measures.
- Random projections are for Euclidean distances.
- But other hashing approaches work for cosine distance, Jaccard distance, etc.

$$
\text { DEC } 190
$$

Lecture 7 | Part 5
The Johnson-Lindenstrauss Lemma

Why does LSH work?

- Two approaches to understanding LSH.
- 1) Hashing view.
- 2) Dimensionality reduction view.

Main Idea

The Johnson-Lindenstrauss Lemma says that, given n points in \mathbb{R}^{d}, you can reduce the dimensionality to $k \approx \log n$ while still preserving relative distances by randomly projecting onto a set of k unit vectors.

Claim

The Johnson-Lindenstrauss Lemma (Informal). Let X be a set of n points in \mathbb{R}^{d}. Let U be a matrix whose $k=O\left(\log (n) / \epsilon^{2}\right)$ rows are Gaussian random vectors in \mathbb{R}^{d}. Then for every $\vec{x}, \vec{y} \in X$,

$$
\|\vec{x}-\vec{y}\| \leq(1 \pm \epsilon)\|U \vec{x}-U \vec{y}\|
$$

LSH and J-L

- In LSH, we use $k=O(\log n)$ hash functions.
- If these hash functions are random projections, the J-L lemma tells that distances are largely preserved.

A Different View of LSH

- Given $p \in \mathbb{R}^{d}$, randomly project to \mathbb{R}^{k} with $k \approx \log n$.
- Let new coordinates be $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$.
- Use standard grid to assign cell id.

Main Idea

LSH (for Euclidean distances) (without banding) can be viewed as dimensionality reduction by random projections, followed by binning into a standard grid.

DST 190
DATA STRUCTURES \ddagger AlGa
Lecture 7 Part 6 NN in Practice

In Practice

- LSH is an important idea.
- Good performance in practice.
- But heuristic approaches are often faster.
- faiss and annoy, among others.

Demo

A demo notebook is available at dsc190.com

Other Approaches

- Hierarchical k-means.
- Product quantization.
- Navigable small worlds.

