
Lecture 7 | Part 1

Approximate Nearest Neighbors

Last Time▶ We saw kd-trees.▶ Enable fast nearest neighbor queries.▶ Θ(log 𝑛) time in low dimensions.

Why, exactly?▶ Why do we need the exact NN?▶ Often something close would do.▶ Especially if not confident in distance measure.▶ As is the case in high dimensions.▶ Maybe this can be done faster?

ANN▶ Given: A set of points and a query point, 𝑝.▶ Return: An approximate nearest neighbor.

k-D ANNs▶ So far, our k-d trees find exact nearest neighbor.▶ But there’s a very simple way to do ANN query.▶ Idea: prune more aggressively.

Before▶ Let 𝑑nn be distance from query point to best so far.▶ Let 𝑑bound be distance from query point to boundary.▶ Search branch only if 𝑑bound < 𝑑nn.

Now▶ Take 𝛼 ≥ 1 as a parameter.▶ Search branch only if 𝑑bound < 𝑑nn/𝛼.▶ Idea: make it easier to toss out branch.▶ If 𝛼 = 1; exact search.▶ If 𝛼 > 1; approximate, faster as 𝛼 grows.

Theory

▶ Let 𝑞 be exact NN, let 𝑞ann
be that found by this
strategy.▶ Then:𝑑(𝑝, 𝑞ann) ≤ 𝛼 ⋅ 𝑑(𝑝, 𝑞) 𝑥

𝑦
(1, 3)

(0, 2)

(0, 8)

(6, 3)

(5, 9)
(3, 10)

𝑝

X

Now▶ Another approach for approximate nearest
neighbors: Locality Sensitive Hashing (LSH).

Lecture 7 | Part 2

Implementing a NN Grid

Grids▶ Given input point 𝑝, want quick way to find
nearby points.▶ Idea: divide space into cells using grid.▶ Find cell containing 𝑝, search it.▶ How would we implement this?

&

⑧

(2,1)

(- 1 ,0) (0,07 (1,0) (2,0)
D

(2,-1)

⑳

Grid Cells▶ Each point (𝑥, 𝑦) given cell id: (⌊𝑥⌋, ⌊𝑦⌋)▶ Example: (1.2, 6.7) given cell id (1, 6).▶ Store (𝑥, 𝑦) in dictionary with cell id as key.▶ Discretization allows multiple points in same cell.▶ Store collisions in list.▶ Generalizes naturally to 𝑑-dimensions.

3 (2 ,
1) : [(2 :7, 1.1) , (2 .5, 1 . 9),73

class NNGrid:

def __init__(self, width):
self.width = width
self.cells = {}

def cell_id(self, p):
p = np.asarray(p)
cell_id = np.floor(p / self.width).astype(int)
return tuple(cell_id)

def insert(self, p):
”””Insert p into the grid.”””
cell_id = self.cell_id(p)
if cell_id not in self.cells:

self.cells[cell_id] = []
self.cells[cell_id].append(p)

...

...

def points_in_cell(self, p):
cell_id = self.cell_id(p)
if cell_id not in self.cells:

return []
points_in_cell = self.cells[cell_id]
turn into an array
return np.vstack(points_in_cell)

def query(self, p):
return brute_force_nn(self.points_in_cell(p), p)

Note▶ This may fail – NN could be in different cell.

⑧

Problems▶ In 𝑑 dimensions, cell id has 𝑑 entries.cell-id(𝑝) = (⌊𝑥1/𝑤⌋, ⌊𝑥2/𝑤⌋, … , ⌊𝑥𝑑/𝑤⌋)▶ All entries must be exactly the same for two
points to have same cell id.▶ This is very unlikely. Most cells are empty or
contain one point.

High-Dimensional Cuboids▶ One “fix”: increase cell width parameter.▶ Suppose we want it to be likely that any points
within distance 𝑟 are in same cell.▶ Then cell width should be ≈ 2𝑟.

High-Dimensional Cuboids▶ But a 𝑑-dimensional cuboid of width 2𝑟 can
contain points at distance 2√𝑑𝑟 from one
another!▶ For even modest 𝑟, the whole data set is in one
cell.

r
=2 w = 4

Main Idea
Dividing into a grid of cuboids fails in high dimen-
sions. Either the cells are empty, or contain every-
thing, depending on the width!

Lecture 7 | Part 3

A Randomized “Grid”

A Randomized “Grid”▶ Idea: Instead of axis-aligned grid, divide into
cells using 𝑘 ≪ 𝑑 random directions.

G

4

↳

2
rai
U ↑O

- I-2
-↳

H

3 (2 , -1
- I2-a-I

quest

Cell Shape▶ Cells are no longer 𝑑-dimensional cuboids.▶ They are random 𝑘-dimensional polytopes.

Question▶ Why is this better? We’ll see in the next sections.

Projection▶ How do we determine which cell a point lies in?
ex x

4 t (*I I all I leat

W

baI &
!I a
-
-4

Cell IDs▶ Pick 𝑘 random unit vectors, �⃗�(1), … , �⃗�(𝑘) ∈ ℝ𝑑.▶ Pick a width parameter, 𝑤.▶ Given any point �⃗�, its cell id is1:cell-id(�⃗�) = (⌊�⃗�(1) ⋅ �⃗�𝑤 ⌋ , ⌊�⃗�(2) ⋅ �⃗�𝑤 ⌋ , … , ⌊�⃗�(𝑘) ⋅ �⃗�𝑤 ⌋ ,)
1use same width and unit vectors for all points

Example

an (
·↑ I
·

Quick Cell-ID Calculation▶ Place �⃗�(1), … , �⃗�(𝑘) into a matrix:
𝑈 = (← (�⃗�(1))𝑇 →← (�⃗�(2))𝑇 →⋮ ⋮ ⋮← (�⃗�(𝑘))𝑇 →)

▶ Then cell-id(�⃗�) = entrywise-floor(𝑈�⃗�/𝑤)I

Generating Random Unit Vectors
def gaussian_projection_matrix(k, d):

X = np.random.normal(size=(k, d))
U = X / np.linalg.norm(X, axis=1)[:,None]
return U

class NNProjectionGrid

def __init__(self, projection_matrix, width):
self.width = width
self.projection_matrix = projection_matrix
self.cells = {}

def cell_id(self, p):
projection = self.projection_matrix @ p
cell_id = np.floor(projection / self.width)
return tuple(cell_id.astype(int))

insert, query, points_in_cell same as for NNGrid

But wait...▶ In high dimensions, still very unlikely for cell to
contain >1 point.▶ Idea: banding. Try, try again.▶ Build multiple NNProjectionGrids with
different random projections.▶ Find points_in_cell for each, pool them
together.

Multiple Random Projections

𝑈1 𝑈2 𝑈3
*
·

Locality Sensitive Hashing▶ This idea (multiple random projections) is an
example of Locality Sensitive Hashing (LSH).▶ We’ll explore it more in the next section.

class LocalitySensitiveHashing:

def __init__(self, l, k, d, w):
self.randomized_grids = []
for i in range(l):

U = gaussian_projection_matrix(k, d)
randomized_grid = NNProjectionGrid(U, w)
self.randomized_grids.append(randomized_grid)

def insert(self, p):
for randomized_grid in self.randomized_grids:

randomized_grid.insert(p)

...

#of bands

~
#of random dirs ./
- dimension of data2 L

r- cell width

...

def query_close(self, p):
nearby = []
for randomized_grid in self.randomized_grids:

points_in_cell = randomized_grid.points_in_cell(p)
nearby.append(points_in_cell)

return np.vstack(nearby)

def query_nn(self, point):
results = self.query_close(point)
pool = np.vstack([r for r in results])
if len(pool) == 0:

raise ValueError('No points nearby.')
return brute_force_nn(pool, point)

Parameters▶ l: number of randomized “grids”▶ k: number of random directions in each “grid”▶ w: bin width

Tuning Parameters▶ Choose so that .query_close returns a small #
of points.▶ If # is very small (or zero), either:▶ increase 𝑤 or ℓ▶ decrease 𝑘

Note▶ This is an approximate NN technique!▶ May not find the NN.▶ May not return anything!

Lecture 7 | Part 4

Theory of Locality Sensitive Hashing

Why does LSH work?▶ Two approaches to understanding LSH.▶ 1) Hashing view.▶ 2) Dimensionality reduction view.

Standard Hashing▶ A hash function ℎ ∶ X → ℤ takes in an object
from X and returns a bucket number.

Standard Hashing▶ Collision: two different objects have same hash.▶ Usually, collisions are bad.▶ Want similar things to have very different hashes.

Locality Sensitive Hashing▶ But in NN search, we want “close” items to be in
the same bucket (have same hash).▶ “Far” items should be in different buckets (have
different hash).

Locality Sensitive Hashing▶ Let 𝑟 be a distance we consider “close”.▶ Let 𝑐𝑟 (with 𝑐 > 1) be a distance we consider “far”.▶ Suppose 𝐻 is a family of hash functions.

LSH Family▶ 𝐻 is an LSH family if when ℎ is randomly drawn
from 𝐻:ℙ(ℎ(𝑥) = ℎ(𝑦)) ≥ 𝑝1 when 𝑑(𝑥, 𝑦) ≤ 𝑟ℙ(ℎ(𝑥) = ℎ(𝑦)) ≤ 𝑝2 when 𝑑(𝑥, 𝑦) ≥ 𝑐𝑟
where 𝑝1 > 𝑝2.

Main Idea
If 𝑥 and 𝑦 are close, the probability that they hash
to the same bin is not too small. If they are far, the
probability is not too large.

Example: Random Projections▶ We have seen one LSH family: random
projections followed by binning.▶ 𝐻 has infinitely-many hash functions, one for
each direction �⃗�: ℎ�⃗�(�⃗�) = ⌊�⃗� ⋅ �⃗�𝑤 ⌋ ,

Example: Random Projections▶ Suppose a random hash function ℎ is chosen.▶ Claim:ℙ(ℎ(𝑥) = ℎ(𝑦)) ≥ 12 when 𝑑(𝑥, 𝑦) ≤ 𝑤/2ℙ(ℎ(𝑥) = ℎ(𝑦)) ≤ 13 when 𝑑(𝑥, 𝑦) ≥ 2𝑤

Intuition

Proof: Close▶ In worst case, grid is orthogonal to line between
points.

𝑥 𝑦𝑤/2𝑤

Proof: Far▶ Only possible if grid is close to parallel.

𝑥 𝑦2𝑤𝑤

Proof: Far▶ Angle must be below 30∘.

𝑥 𝑦2𝑤

Amplification▶ Lots of points have same hash.▶ To be more selective, randomly select 𝑘 hash
functions for cell id.cell-id(𝑥) = (ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑘(𝑥))

Example: Random Projections▶ In case of random projections.

cell-id(�⃗�) = (⌊�⃗�(1) ⋅ �⃗�𝑤 ⌋⏟ℎ1 , ⌊�⃗�(2) ⋅ �⃗�𝑤 ⌋⏟ℎ2 , … , ⌊�⃗�(𝑘) ⋅ �⃗�𝑤 ⌋⏟ℎ𝑘)

Collision Probability▶ Remember:𝑃(ℎ(𝑥) = ℎ(𝑦)) ≥ 𝑝1 if close.𝑃(ℎ(𝑥) = ℎ(𝑦)) ≤ 𝑝2 if far.▶ Collision occurs if ℎ𝑖(𝑥) = ℎ𝑖(𝑦) ∀𝑖 ∈ {1, … , 𝑘}.▶ Probability of collision...▶ if close: ≥ 𝑝𝑘1▶ if far: ≤ 𝑝𝑘2

Choosing 𝑘▶ Want prob. of far points colliding to be small.▶ Say, 1/𝑛.▶ Set 𝑝𝑘2 = 1/𝑛. Then𝑘 = log𝑝2 1𝑛 = − log 𝑛log 𝑝2

Main Idea
We can use 𝑘 = Θ(log 𝑛) hash functions.

Main Idea
When using random projections as hash functions,
we can use 𝑘 = Θ(log 𝑛) directions. This is usually
much less than 𝑑.

But wait...▶ Probability of close points colliding is 𝑝𝑘1.▶ Let 𝑝1 = 𝑝𝜌2. We’ll have 𝜌 < 1, since 𝑝2 < 𝑝1.▶ Since 𝑝𝑘2 = 1𝑛 , we have 𝑝𝑘1 = 1𝑛𝜌 .▶ This is very small.

Banding▶ Before: one set of 𝑘 hash functions.▶ With banding: keep ℓ sets (bands) of 𝑘 hash
functions.▶ To query NN of 𝑝, find points that are in the same
cell as 𝑝 in any of the bands.

Banding▶ Probability of at least one match:1𝑛𝜌⏟
collision in band 1

+ 1𝑛𝜌⏟
collision in band 2

+…+ 1𝑛𝜌⏟
collision in band ℓ = ℓ𝑛𝜌▶ Want this to be ≈ 1, so:ℓ = 𝑛𝜌

Main Idea
We should set the number of bands to be 𝑛𝜌. 𝜌
depends on 𝑐, and is usually not small. For random
projections, 𝜌 ≈ .63.

Analysis▶ How efficient is LSH?▶ Worst case, everything hashes to same bin: 𝑂(𝑛).▶ In practice, much better.▶ Requires a lot of memory. Θ(ℓ𝑛).

Other Distances▶ LSH works for many different similarity measures.▶ Random projections are for Euclidean distances.▶ But other hashing approaches work for cosine
distance, Jaccard distance, etc.

Lecture 7 | Part 5

The Johnson-Lindenstrauss Lemma

Why does LSH work?▶ Two approaches to understanding LSH.▶ 1) Hashing view.▶ 2) Dimensionality reduction view.

Main Idea
The Johnson-Lindenstrauss Lemma says that,
given 𝑛 points in ℝ𝑑, you can reduce the dimen-
sionality to 𝑘 ≈ log 𝑛 while still preserving relative
distances by randomly projecting onto a set of 𝑘
unit vectors.

Claim

The Johnson-Lindenstrauss Lemma (Infor-
mal). Let 𝑋 be a set of 𝑛 points in ℝ𝑑. Let𝑈 be a matrix whose 𝑘 = 𝑂(log(𝑛)/𝜖2) rows
are Gaussian random vectors in ℝ𝑑. Then
for every ⃗𝑥, ⃗𝑦 ∈ 𝑋,‖ ⃗𝑥 − ⃗𝑦‖ ≤ (1 ± 𝜖)‖𝑈 ⃗𝑥 − 𝑈 ⃗𝑦‖

LSH and J-L▶ In LSH, we use 𝑘 = 𝑂(log 𝑛) hash functions.▶ If these hash functions are random projections,
the J-L lemma tells that distances are largely
preserved.

A Different View of LSH▶ Given 𝑝 ∈ ℝ𝑑, randomly project to ℝ𝑘 with𝑘 ≈ log 𝑛.▶ Let new coordinates be (𝑦1, 𝑦2, … , 𝑦𝑘).▶ Use standard grid to assign cell id.

Main Idea
LSH (for Euclidean distances) (without banding)
can be viewed as dimensionality reduction by ran-
dom projections, followed by binning into a stan-
dard grid.

Lecture 7 | Part 6

NN in Practice

In Practice▶ LSH is an important idea.▶ Good performance in practice.▶ But heuristic approaches are often faster.▶ faiss and annoy, among others.

Demo▶ A demo notebook is available at dsc190.com

Other Approaches▶ Hierarchical k-means.▶ Product quantization.▶ Navigable small worlds.

