
Lecture 5 | Part 1

Today’s Lecture

Last Time

▶ Time needed for BST operations is proportional
to height.

▶ If tree is balanced, ℎ = Θ(log 𝑛)

▶ If tree is unbalanced, ℎ = 𝑂(𝑛)

Today

▶ How do we ensure that tree is balanced?

▶ Approach 1: Complicated rules, red-black trees.

▶ Approach 2: Randomization

▶ We’ll introduce treaps.

Lecture 5 | Part 2

Red-Black Trees

Self-Balancing BSTs

▶ We wish to ensure that the tree does not become
unbalanced.

▶ Idea: If tree becoming unbalanced, it will
automatically trigger a rebalance.

▶ Several strategies, including red-black trees and
AVL trees

Red-Black Trees

▶ A red-black tree is a BST whose nodes are
colored red and black.

▶ Leaf nodes are “nil”.

▶ Must satisfy four additional properties:
1. The root node is black.
2. Every leaf node is black.
3. If a node is red, both child nodes are black.
4. For any node, all paths from the node to a leaf

contain the same number of black nodes.

Example

42

25

20

1

nil nil

24

nil nil

40

36

nil nil

nil

70

65

61

nil nil

67

nil nil

72

70

nil nil

nil

Example

▶ This not a red-black tree.
▶ Violates last property

1

20

24

25

nil nil

nil

nil

nil

Claim

If a red-black tree has 𝑛 internal (non-nil)
nodes, then the height is at most 2 log(𝑛 +
1).

Proof Intuition1

▶ All paths from root to a leaf are about the same
length (≈ ℎ).
▶ Same number of black nodes.

▶ Therefore, the tree is close to balanced.

▶ So height is proportional to log 𝑛

1Formal proof proceeds by induction.

Non-Modifying Operations

▶ As a result, the non-modifying operations take
Θ(log 𝑛) time in red-black trees.
▶ query
▶ minimum/maximum
▶ next smallest/largest

▶ Proof: these take Θ(ℎ) time in any BST, and in a
red-black tree ℎ = Θ(log 𝑛).

Insertion and Deletion

▶ Standard BST .insert and .delete methods
preserve BST, but not red-black properties.

▶ Insertion/deletion in a red-black tree is
considerably more complicated.

▶ But both take Θ(log 𝑛) time.

Implementing balanced trees is an exacting task and
as a result balanced tree algorithms are rarely imple-
mented except as part of a programming assignment
in a data structures class.2

Pugh, 1990

2For computer science majors.

Summary

▶ For red-black trees, worst cases:
query Θ(log 𝑛)
minimum/maximum Θ(log 𝑛)
next largest/smallest Θ(log 𝑛)
insertion Θ(log 𝑛)

▶ But they are tricky to implement.

Summary

▶ As a data scientist, you should know that
self-balancing BSTs exist, guaranteeing Θ(log 𝑛)
worst-case time for all operations.

▶ But you should not implement them yourself.

Lecture 5 | Part 3

Randomization to the Rescue

Implementing BSTs

▶ Red-black trees are complicated to implement.
▶ Use someone else’s implementation.

▶ But sometimes an off-the-shelf implementation
doesn’t solve your problem.
▶ Example: BSTs for order statistics.

▶ How do we implement a self-balancing BST
simply and efficiently?

Order Matters

▶ The structure of a BST depends on insertion
order.

Example
▶ Insert 1,2,3,4,5,6 into BST, in that order.

Example
▶ Insert 3, 5, 1, 2, 4, 6 into BST, in that order.

Claim

The expected height of a BST built by inserting the
keys in random order is Θ(log 𝑛).

Idea

▶ To build a BST, take all 𝑛 keys, shuffle them
randomly, then insert.

▶ No need for Red-Black Trees, right?

Problem

▶ Usually don’t have all the keys right now.

▶ This is a dynamic set, after all.

▶ The keys come to us in a stream, can’t specify
order.

Goal

▶ Design a data structure that simulates random
insertion order without actually changing the
order.

Lecture 5 | Part 4

Treaps

Randomization

▶ If insertions are in a random order, expected
depth of a BST is Θ(log 𝑛).

▶ But in online operation, we cannot randomize
insertion order.

▶ Now: an elegant data structure simulating
random insertion order in online operation.

First: Recall Heaps

▶ A max heap is a binary tree where:
▶ each node has a priority.
▶ if 𝑦 is a child of node 𝑥, then

y.priority ≤ x.priority

Example

▶ This is a max heap:

94

20

15

5 2

11

1 7

55

40

34

17

Treaps

▶ A treap is a binary tree in which each node has
both a key and a priority.

▶ It is a max heap w.r.t. its priorities.

▶ It is a binary search tree w.r.t. its keys.

Example

▶ This is a treap:
k: 20
p: 90

k: 15
p: 70

k: 12
p: 65

k: 9
p: 55

k: 13
p: 60

k: 18
p: 63

k: 17
p: 12

k: 19
p: 30

k: 55
p: 80

k: 33
p: 73

k: 29
p: 51

k: 60
p: 42

Example

▶ This is a treap:
k: 20
p: 90

k: 15
p: 70

k: 12
p: 65

k: 9
p: 55

k: 13
p: 60

k: 18
p: 63

k: 17
p: 12

k: 19
p: 30

k: 55
p: 80

k: 33
p: 73

k: 29
p: 51

k: 60
p: 42

Example

▶ This is a treap:
k: 20
p: 90

k: 15
p: 70

k: 12
p: 65

k: 9
p: 55

k: 13
p: 60

k: 18
p: 63

k: 17
p: 12

k: 19
p: 30

k: 55
p: 80

k: 33
p: 73

k: 29
p: 51

k: 60
p: 42

BST Operations

▶ Because a treap is a BST, querying, finding
max/min by key is done the same.

▶ Insertion and deletion require care to preserve
heap property.

Insertion

1. 1) Using the key, find place to insert node as if in
a BST.

2. While priority of new node is > than parent’s:
▶ Left rotate new node if it is the right child.
▶ Right rotate new node if it is the left child.

▶ Rotate preserves BST, repeat until heap property
satisfied.

(Right) Rotation

𝑥

𝐶

𝑝

𝑢

𝐴 𝐵

→

Example: Insertion

▶ Insert key: 16, priority: 65.
k: 20
p: 90

k: 15
p: 70

k: 12
p: 65

k: 9
p: 55

k: 13
p: 60

k: 18
p: 63

k: 17
p: 12

k: 19
p: 30

k: 55
p: 80

k: 33
p: 73

k: 29
p: 51

k: 60
p: 42

Example: Insertion

▶ Insert key: 16, priority: 65.
k: 20
p: 90

k: 15
p: 70

k: 12
p: 65

k: 9
p: 55

k: 13
p: 60

k: 18
p: 63

k: 17
p: 12

k: 16
p: 65

k: 19
p: 30

k: 55
p: 80

k: 33
p: 73

k: 29
p: 51

k: 60
p: 42

Example: Insertion

▶ Insert key: 16, priority: 65.
k: 20
p: 90

k: 15
p: 70

k: 12
p: 65

k: 9
p: 55

k: 13
p: 60

k: 18
p: 63

k: 17
p: 12

k: 16
p: 65

k: 19
p: 30

k: 55
p: 80

k: 33
p: 73

k: 29
p: 51

k: 60
p: 42

Observe: This is a BST, not a heap. Rotate to fix.

Example: Insertion

▶ Right rotate 16.
k: 20
p: 90

k: 15
p: 70

k: 12
p: 65

k: 9
p: 55

k: 13
p: 60

k: 18
p: 63

k: 16
p: 65

k: 17
p: 12

k: 19
p: 30

k: 55
p: 80

k: 33
p: 73

k: 29
p: 51

k: 60
p: 42

Example: Insertion

▶ Right rotate 16 again.
k: 20
p: 90

k: 15
p: 70

k: 12
p: 65

k: 9
p: 55

k: 13
p: 60

k: 16
p: 65

k: 17
p: 12

k: 18
p: 63

k: 19
p: 30

k: 55
p: 80

k: 33
p: 73

k: 29
p: 51

k: 60
p: 42

Deletion

▶ While node is not a leaf:
▶ Rotate it with child of highest priority.

▶ Once it is a leaf, delete it.

Lecture 5 | Part 5

Treaps and Order

BSTs and Order

▶ There are many possible BSTs representing the
same set of keys.

▶ The order in which keys are inserted has a large
effect on the structure of the resulting BST.

▶ What about for treaps?

Claim

Given any set of (key, priority) pairs, if all keys and
priorities are unique, then the treap is unique.

Claim

Corollary: Given any set of (key, priority) pairs, if
all keys and priorities are unique, inserting them
one-by-one into a treap results in the same treap,
no matter the insertion order.

Example

▶ Insert (3, 40), (1, 20), (10, 50), (6, 30), (5, 100), in that order

Example

▶ Insert (5, 100), (10, 50), (3, 40), (6, 30), (1, 20), in that order

Proof Sketch

▶ Node w/ highest priority must be the root.

▶ Root’s left (right) child must have highest priority
among nodes with key < (>) root key.

▶ Apply recursively.

Which BST?

▶ Given a set of unique (key, priority) pairs, there
are many BSTs for the keys.
▶ Each corresponding to a different insertion order.

▶ Only one of these BSTs is also a heap for the
priorities.

▶ What insertion order corresponds to this BST?

Example

▶ Insert (5, 100), (10, 50), (3, 40), (6, 30), (1, 20), in that order

Claim

The BST obtained by building a treap is the same
BST you’d get by inserting nodes in decreasing or-
der of priority.

Main Idea

The structure of the treap is determined not by in-
sertion order, but by the priorities.

Lecture 5 | Part 6

Randomized Binary Search Trees

Recall

▶ We saw before that inserting keys in random
order results in a balanced tree, on average.

▶ But we often can’t control the order in which we
see keys.

▶ Also saw that order doesn’t matter for treaps;
priorities do.

The Idea

▶ When inserting a node into a treap, generate
priority randomly.

▶ The resulting treap will be the same tree as a BST
built with nodes randomly ordered according to
these priorities.

▶ It will almost surely be balanced.

Randomized Binary Search Tree

▶ This is called a randomized binary search tree3.

▶ Introduced by Cecilia Rodriguez Aragon, Raimund
Seidel in 1989; later, Conrado Martínez and
Salvador Roura in 1997.

3Sometimes people call these treaps

Main Idea

By generating priorities randomly, we “simulate”
inserting keys in random order, without actually
having to see the keys in random order.

Warning

▶ Randomness does not mean that the result of,
for example, a query has some probability of
being incorrect.

▶ BST operations on treaps are always, 100%
correct.

▶ Instead, the tree’s structure is random.

Example
▶ Insert 1, 2, 3, 4, 5, 6 into a treap, generating priorities
randomly.

Time Complexities

▶ For randomized BSTs, expected times:
query Θ(log 𝑛)
minimum/maximum Θ(log 𝑛)
next largest/smallest Θ(log 𝑛)
insertion Θ(log 𝑛)

▶ Worst case times are Θ(𝑛), but very rare

Comparison to Red-Black Trees

▶ When compared to red-black trees, randomized
BSTs are:
▶ same in terms of expected time;
▶ perhaps slightly slower in practice;
▶ much easier to implement/modify.

▶ Good trade-off for a data scientist!

Bulk Operations

▶ Treaps also allow for very fast set operations.

▶ Example: Given a treap 𝑇 and a “splitting value”
𝑥, split into two treaps 𝑇1 and 𝑇2 such that:
▶ 𝑇1 contains all keys < 𝑥;
▶ 𝑇2 contains all keys ≥ 𝑥.

▶ Idea: Insert 𝑥 into 𝑇 with a very high priority.

▶ The time needed is only Θ(log 𝑛), not Θ(𝑛)!

Priority Hacks

▶ Several interesting strategies for generating a
new node’s priority, beyond simply generating a
random number.

Idea: “Learning” Treaps

▶ Idea: Frequently-queried items should be near
top of tree.

▶ When an item is queried, update its priority:

new priority = 𝑚𝑎𝑥(old priority, random number)

Demo

▶ A demo notebooks is posted on the course
website.

Lecture 5 | Part 7

Order Statistic Trees

Modifying BSTs

▶ More than most other data structures, BSTs must
be modified to solve unique problems.

▶ Red-black trees are a pain to modify.

▶ Treaps/randomized BSTs are easy!

Order Statistics

▶ Given 𝑛 numbers, the 𝑘th order statistic is the
𝑘th smallest number in the collection.

Example

[99, 42, -77, -12, 101]

▶ 1st order statistic:

▶ 2nd order statistic:

▶ 4th order statistic:

Exercise

Some special cases of order statistics go by differ-
ent names. Can you think of some?

Special Cases

▶ Minimum: 1st order statistic.

▶ Maximum: 𝑛th order statistic.

▶ Median: ⌈𝑛/2⌉th order statistic4.

▶ 𝑝th Percentile: ⌈ 𝑝
100 ⋅ 𝑛⌉th order statistic.

4What if 𝑛 is even?

Computing Order Statistics

▶ Quickselect finds any order statistic in linear
expected time.

▶ This is efficient for a static set.

▶ Inefficient if set is dynamic.

Goal

▶ Create a dynamic set data structure that
supports fast computation of any order statistic.

Exercise

Does the “two heaps” trick from before work?

BST Solution

▶ For each node, keep attribute .size, containing
of nodes in subtree rooted at current node

Example: Insert/Delete

42

25

20

1 24

40

36

70

65

61 67

72

70

Challenge

▶ .number_lt changes when nodes are
inserted/deleted

▶ We must modify the code for insertion/deletion

▶ A pain with R-B tree; easy with treap!

Lecture 5 | Part 8

BSTs vs. Heaps

BSTs vs. Heaps

▶ Seemingly similar.

▶ Both are binary trees.

▶ Similar time complexities.

Summary
Balanced BST Binary Heap

get minimum/maximum Θ(log 𝑛)5 Θ(1)
extract minimum/maximum Θ(log 𝑛) Θ(log 𝑛)

insertion Θ(log 𝑛) Θ(log(𝑛))

5Can actually be optimized to Θ(1)

Comparison

BSTs
▶ No cache locality
▶ Memory for pointers
▶ Maintains sorted order
▶ Used for order statistics,
queries

Heaps
▶ Cache locality
▶ Use less memory
▶ Costly to query
▶ Used for max/min

