DSC /70

DATA STRUCTURES § ALELORITHMS
Lecture 4 Part1

Dynamic Sets and Hashing

Dynamic Set
One of the most useful abstract data types.

A collection of unique keys which supports:
insertion and deletion
membership queries: x in set

Very similar to dictionary.

Implementation #1
Store n elements in a dynamic array.
Initial cost: ©(n).
Query: linear search, O(n).

Insertion: ©(1) amortized.

Implementation #2
Store n elements in a sorted dynamic array.
Initial cost: O(n logn).
Query: binary search, ©(logn).

Insertion: O(n)
Must maintain sorted order, involves copies.

Better Implementation
Store n elements in a hash table.
Initial cost: O(n)'.

Query: O(1).

Insertion: ©(1).

TAll time complexities are average case.

Today’s Lecture
We'll review hashing.
See where hashing is not the right thing to do.
Review binary search trees as an alternative.

Next lecture: introduce treaps.

Hashing

One of the most important ideas in CS.

Tons of uses:
Verifying message integrity.
Fast queries on a large data set.
Identify if file has changed in version control.

Hash Function

A hash function takes a (large) object and
returns a (smaller) “fingerprint” of that object.

How?

Looking at certain bits, combining them in ways
that look random.

Hash Function Properties
Hashing same thing twice returns the same hash.

Unlikely that different things have same
fingerprint.
But not impossible!

Example

MD5 is a cryptographic hash function.
Hard to “reverse engineer” input from hash.

Returns a really large number in hex.

a741d8524a853cf83ca21eabf8cea190

Used to “fingerprint” whole files.

Example

> echo "My name is Justin” | mds
a741d8524a853cf83ca21eabf8cea196
> echo "My name is Justin” | mds
a741d8524a853cf83ca21eabf8cea196
> echo "My name is Justin!” | mds
fi11eed2391bbdeasa2355397ce89fafd

Another Use
Want to place images into 100 bins.
How do we decide which bin an image goes into?

Hash function!
Takes in an image.
Outputs a numberin {1, 2, ..., 100}.

Hashing for Data Scientists

Don’t need to know much about how hash
function works.

But should know how they are used.

Hash Tables

Create an array with pointers to m linked lists.
Usually m =~ number of things you'll be storing.

Create hash function to turn input into a number
in{0,1,...,m-1}.

Example

hash('hello"')
hash('data') =

::3
hash('science')

0]

Collisions
The universe is the set of all possible inputs.
This is usually much larger than m (even infinite).
Not possible to assign each input to a unique bin.

If hash(a) == hash(b), there is a collision.

Chaining

Collisions stored in same bin, in linked list.
Query: Hash to find bin, then linear search.

The Idea

A good hash function will utilize all bins evenly.
Looks like uniform random distribution.

If m = n, then only a few elements in each bin.

As we add more elements, we need to add bins.

Average Case
n elements in bin.
m bins.
Assume elements placed randomly in bins?.

Expected bin size: n/m.

20f course, they are placed deterministically.

Analysis

Query:
O(1) to find bin
O(n/m) for linear search.
Total: ©(1 + n/m).
We usually guarantee m = 0(n), = 0(1).

Insertion: ©(1).

Worst Case

Everything hashed to same bin.
Really unlikely!
Adversarial attack?

Query:
O(1) to find bin
O(n) for linear search.
Total: ©(n).

Worst Case Insertion

We need to ensure that m<c-n.
Otherwise, too many collisions.

If we add a bunch of elements, we'll need to
increase m.

Increasing m means allocating a new array,
O(m) = ©(n) time.

Main Idea

Hash tables support constant (expected) time in-
sertion and membership queries.

Hashing Downsides

Hashing is like magic. Constant time access?!

n

Comes at a cost: data now scattered “randomly”.

Examples:
find max/min in hash table.
range query: all strings between 'a' and 'c'

Must do a full loop over table!

Example

hash('apple') ==
hash('bill nye')
hash('cassowary')

3

= 4

DSC /70

DATA STRUCTURES § ALELORITHMS
Lecture 4 Part?2

Binary Search Trees

Binary Search Trees
An alternative way to implement dynamic sets.
Slightly slower insertion, query.

But preserves data in sorted order.

Binary Search Tree

A binary search tree (BST) is a binary tree that
satisfies the following for any node x:

if y is in x's left subtree:

y.key < x.key

if y is in x's right subtree:

y.key 2 x.key

Example

This is a BST.

Example

This is not a BST.

‘ Is this is a BST? \

Memory Representation

Each element stored as a node at an arbitrary
address in memory.

Each node has a key® and pointers to left child,
right child, and parent nodes (if they exist).

O
12) (3

3we’ll assume keys are unique, though this can be relaxed.

In Python

class Node:
def __init__(self, key, parent=None):
self.key = key
self.parent = parent
self.left = None
self.right = None

class BinarySearchTree:
def __init__(self, root: Node):
self.root = root

In Python

root = Node(6)

n1 = Node(12, parent=root)
root.left = n1

n2 = Node(33, parent=root)
root.right = n2

tree = BinarySearchTree(root)

Operations on BSTs

We will want to:
traverse the nodes in sorted order by key
query a key (is it in the tree?)
insert a new key
delete an existing key

Inorder Traversal

Implement inorder recursively so that it prints the
keys of the nodes in the tree in sorted order.

def inorder(node):
if node is not None:
inorder(node.left)
print(node.key)
inorder(node.right)

Inorder Traversal
Prints nodes in sorted order.
Visits each node once, ©(1) time in the call.

Takes ©(n) time.

Queries
Given: a BST and a target, t.

Return: True or False, is the target in the
collection?

Queries

Is 36 in the tree? 65? 23?

Queries
Start walking from root.

If current node is:
equal to target, return True;
too large (> target), follow left edge;
too small (< target), follow right edge;
None, return False

Queries, in Python

def query(self, target):
current_node = self.root
while current_node is not None:
if current_node.key == target:
return current_node
elif current_node.key < target:
current_node = current_node.right
else:
current_node = current_node.left
return None

Queries, Analyzed
Best case: 9(1).

Worst case: ©(h), where h is height of tree.

Insertion
Given: a BST and a new key, k.
Modify: the BST, inserting k.

Must maintain the BST properties.

Insertion

Insert 23 into the BST.

def insert(self, new_key):
assume new_key is unique
current_node = self.root
parent = None

while current_node is not None:
parent = current_node
if current_node.key == new_key:
raise ValueError(f'Duplicate key "{new_key}” not allowed."')
if current_node.key < new_key:
current_node = current_node.right
elif current_node.key > new_key:
current_node = current_node.left

new_node = Node(key=new_key, parent=parent)
if parent is None:
self.root = new_node
elif parent.key < new_key:
parent.right = new_node
else:
parent.left = new_node

Insertion, Analyzed

Worst case: O(h), where h is height of tree.

Deletion
Given: a key in the BST.
Modify: the BST, deleting the key.
Must maintain the BST properties.

This is a little trickier.

Deletion: Case 1 (Easy)

Delete 36 from the BST.

Deletion: Case 2 (Also Easy)

Exercise: Delete 65 from the BST.

Deletion: Case 3 (Tricky)

Delete 42 from the BST.

Deletion
If node has no children (leaf), easy.
If node has one child, also easy.
Otherwise, a little trickier.

|dea: rotate* node to bottom, preserving BST.
When it is a leaf or has one child, delete it.

“Most books take a different approach with the same time complexity.

(Right) Rotation

(Left) Rotation

Left rotate and right rotate preserve the
BST property.

def _right_rotate(self, x):

u = x.left
B = u.right
C = x.right
p = Xx.parent
x.left = B

if B is not None: B.parent = X

u.right = x
X.parent = u

u.parent = p

if p is None:
self.root = u
elif p.left is x:
p.left = u
else:
p.right = u

Deletion Analyzed
Each rotate takes ©(1) time.
O(h) rotations until node becomes leaf.

So O(h) time in the worst case.

Main Idea

Insertion, deletion, and querying all take ©(h) time
in the worst case, where h is the height of the tree.

DPSC /70

DATA STRUCTURES § ALLoRITHMS
Lecture 4 Part 3
Balanced and Unbalanced BSTs

Binary Tree Height

In case of very balanced tree, h grows
logarithmically with n.
h = ©(logn)
Query, insertion, deletion take worst case ©(logn)
time.

Binary Tree Height

In the case of very unbalanced tree, h grows

linearly with n.
h = ©(logn)
Query, insertion, deletion take worst case ©(n) time.

Unbalanced Trees

Occurs if we insert items in (close to) sorted or
reverse sorted order.

This is a common situation in practice.

Example: ocean temperatures measured at

Scripps pier over the course of a month.
62, 64, 65, 66, 67, 68, 69, 70, 68, 65, 64, 62, ...

Example

Insert 1, 2, 3, 4, 5, 6, 7, 8 (in that order).

Time Complexities

query O(h)
insertion ©(h)

Where h is height, and h = Q(logn) and h = O(n).

Time Complexities (Balanced)

query O(logn)
insertion O(logn)

Where h is height, and h = Q(logn) and h = O(n).

Worst Case Time Complexities
(Unbalanced)

query O(n)
insertion 0O(n)

The worst case is bad.
Worse than using a sorted array!

The worst case is not rare.

Main Idea

The operations take linear time in the worst case
unless we can somehow ensure that the tree is bal-
anced.

DSC /70

DATA STRUCTURES § ALELORITHMS
Lecture 4 Part 4

Range Queries, Max, and Min

Why use a BST?

Even assuming a balanced tree, BSTs seem worse
than hash tables.

BST Hash Table®

query O(logn) o(1)
insertion O(logn) o(1)

So when are BSTs better?

>Average case times reported.

Max/Min
Consider finding the maximum element.
Hash tables: ©(n); must loop through all bins.

BST: ©(h), which is O(log n) if balanced

Keeping track of the maximum can be done effi-
ciently in any stream of numbers, provided that
there are only insertions. But if deletions are al-
lowed, BSTs can find the next maximum efficiently.

How well do heaps work for this problem? Are they
better? In what sense?

Range Queries
Given: a collection and an interval [a, b]
Retrieve: all elements in the interval.

Example:
collection: 55, 12, 5, 43, 20, 90, 65, 99, 60, 70
interval: [1, 30]
result: 5, 12, 20

How quickly can this be performed with a hash ta-
ble?

Range Queries in BST

Definitions:
The ceiling of x in a BST is the smallest key > x.
The successor of node u is the smallest node > x.

Strategy:
Find the floor of a
Repeatedly find the successor until > b

Range Queries

ceiling and successor both take O(h) = O(logn) in
balanced trees

If the are k elements in the range, calling
successor R times gives complexity O(k logn).

