
Lecture 4 | Part 1

Dynamic Sets and Hashing

Dynamic Set

▶ One of the most useful abstract data types.

▶ A collection of unique keys which supports:
▶ insertion and deletion
▶ membership queries: x in set

▶ Very similar to dictionary.

Implementation #1

▶ Store 𝑛 elements in a dynamic array.

▶ Initial cost: Θ(𝑛).

▶ Query: linear search, 𝑂(𝑛).

▶ Insertion: Θ(1) amortized.

Implementation #2

▶ Store 𝑛 elements in a sorted dynamic array.

▶ Initial cost: 𝑂(𝑛 log 𝑛).

▶ Query: binary search, Θ(log 𝑛).

▶ Insertion: 𝑂(𝑛)
▶ Must maintain sorted order, involves copies.

Better Implementation

▶ Store 𝑛 elements in a hash table.

▶ Initial cost: Θ(𝑛)1.

▶ Query: Θ(1).

▶ Insertion: Θ(1).

1All time complexities are average case.

Today’s Lecture

▶ We’ll review hashing.

▶ See where hashing is not the right thing to do.

▶ Review binary search trees as an alternative.

▶ Next lecture: introduce treaps.

Hashing

▶ One of the most important ideas in CS.

▶ Tons of uses:
▶ Verifying message integrity.
▶ Fast queries on a large data set.
▶ Identify if file has changed in version control.

Hash Function

▶ A hash function takes a (large) object and
returns a (smaller) “fingerprint” of that object.

How?

▶ Looking at certain bits, combining them in ways
that look random.

Hash Function Properties

▶ Hashing same thing twice returns the same hash.

▶ Unlikely that different things have same
fingerprint.
▶ But not impossible!

Example

▶ MD5 is a cryptographic hash function.
▶ Hard to “reverse engineer” input from hash.

▶ Returns a really large number in hex.

a741d8524a853cf83ca21eabf8cea190

▶ Used to “fingerprint” whole files.

Example

> echo ”My name is Justin” | md5
a741d8524a853cf83ca21eabf8cea190
> echo ”My name is Justin” | md5
a741d8524a853cf83ca21eabf8cea190
> echo ”My name is Justin!” | md5
f11eed2391bbd0a5a2355397c089fafd

Another Use

▶ Want to place images into 100 bins.

▶ How do we decide which bin an image goes into?

▶ Hash function!
▶ Takes in an image.
▶ Outputs a number in {1, 2, …, 100}.

Hashing for Data Scientists

▶ Don’t need to know much about how hash
function works.

▶ But should know how they are used.

Hash Tables

▶ Create an array with pointers to 𝑚 linked lists.
▶ Usually 𝑚 ≈ number of things you’ll be storing.

▶ Create hash function to turn input into a number
in {0, 1, … ,𝑚 − 1}.

Example

hash('hello') == 3
hash('data') == 0
hash('science') == 4

0 1 2 3 4 𝑚 − 1
…

Collisions

▶ The universe is the set of all possible inputs.

▶ This is usually much larger than 𝑚 (even infinite).

▶ Not possible to assign each input to a unique bin.

▶ If hash(a) == hash(b), there is a collision.

Chaining
▶ Collisions stored in same bin, in linked list.
▶ Query: Hash to find bin, then linear search.

0 1 2 3 𝑚 − 1
…

The Idea

▶ A good hash function will utilize all bins evenly.
▶ Looks like uniform random distribution.

▶ If 𝑚 ≈ 𝑛, then only a few elements in each bin.

▶ As we add more elements, we need to add bins.

Average Case

▶ 𝑛 elements in bin.

▶ 𝑚 bins.

▶ Assume elements placed randomly in bins2.

▶ Expected bin size: 𝑛/𝑚.

2Of course, they are placed deterministically.

Analysis

▶ Query:
▶ Θ(1) to find bin
▶ Θ(𝑛/𝑚) for linear search.
▶ Total: Θ(1 + 𝑛/𝑚).
▶ We usually guarantee 𝑚 = 𝑂(𝑛), ⟹ Θ(1).

▶ Insertion: Θ(1).

Worst Case

▶ Everything hashed to same bin.
▶ Really unlikely!
▶ Adversarial attack?

▶ Query:
▶ Θ(1) to find bin
▶ Θ(𝑛) for linear search.
▶ Total: Θ(𝑛).

Worst Case Insertion

▶ We need to ensure that 𝑚 ≤ 𝑐 ⋅ 𝑛.
▶ Otherwise, too many collisions.

▶ If we add a bunch of elements, we’ll need to
increase 𝑚.

▶ Increasing 𝑚 means allocating a new array,
Θ(𝑚) = Θ(𝑛) time.

Main Idea

Hash tables support constant (expected) time in-
sertion and membership queries.

Hashing Downsides

▶ Hashing is like magic. Constant time access?!

▶ Comes at a cost: data now scattered “randomly”.

▶ Examples:
▶ find max/min in hash table.
▶ range query: all strings between 'a' and 'c'

▶ Must do a full loop over table!

Example

hash('apple') == 3
hash('bill nye') == 0
hash('cassowary') == 4

0 1 2 3 4 𝑚 − 1
…

Lecture 4 | Part 2

Binary Search Trees

Binary Search Trees

▶ An alternative way to implement dynamic sets.

▶ Slightly slower insertion, query.

▶ But preserves data in sorted order.

Binary Search Tree

▶ A binary search tree (BST) is a binary tree that
satisfies the following for any node x:

▶ if y is in 𝑥’s left subtree:

y.key ≤ x.key

▶ if y is in 𝑥’s right subtree:

y.key ≥ x.key

Example

▶ This is a BST.

55

12

5 43

20

90

99

Example

▶ This is not a BST.

55

39

5 43

20

90

99

55

12

5

2

Exercise

Is this is a BST?

Memory Representation

▶ Each element stored as a node at an arbitrary
address in memory.

▶ Each node has a key3 and pointers to left child,
right child, and parent nodes (if they exist).

6

12 33

3We’ll assume keys are unique, though this can be relaxed.

In Python

class Node:
def __init__(self, key, parent=None):

self.key = key
self.parent = parent
self.left = None
self.right = None

class BinarySearchTree:
def __init__(self, root: Node):

self.root = root

In Python

6

12 33

root = Node(6)
n1 = Node(12, parent=root)
root.left = n1
n2 = Node(33, parent=root)
root.right = n2
tree = BinarySearchTree(root)

Operations on BSTs

▶ We will want to:
▶ traverse the nodes in sorted order by key
▶ query a key (is it in the tree?)
▶ insert a new key
▶ delete an existing key

Inorder Traversal

42

25

20

1 24

40

41

70

65 72

71

Exercise

Implement inorder recursively so that it prints the
keys of the nodes in the tree in sorted order.

def inorder(node):
if node is not None:

inorder(node.left)
print(node.key)
inorder(node.right)

Inorder Traversal

▶ Prints nodes in sorted order.

▶ Visits each node once, Θ(1) time in the call.

▶ Takes Θ(𝑛) time.

Queries

▶ Given: a BST and a target, 𝑡.

▶ Return: True or False, is the target in the
collection?

Queries

▶ Is 36 in the tree? 65? 23?

42

25

20

1 24

40

36

70

65

60

72

Queries

▶ Start walking from root.

▶ If current node is:
▶ equal to target, return True;
▶ too large (> target), follow left edge;
▶ too small (< target), follow right edge;
▶ None, return False

Queries, in Python

def query(self, target):
current_node = self.root
while current_node is not None:

if current_node.key == target:
return current_node

elif current_node.key < target:
current_node = current_node.right

else:
current_node = current_node.left

return None

Queries, Analyzed

▶ Best case: Θ(1).

▶ Worst case: Θ(ℎ), where ℎ is height of tree.

Insertion

▶ Given: a BST and a new key, 𝑘.

▶ Modify: the BST, inserting 𝑘.

▶ Must maintain the BST properties.

Insertion

▶ Insert 23 into the BST.
42

25

20

1 24

40

36

70

65

60

72

def insert(self, new_key):
assume new_key is unique
current_node = self.root
parent = None

while current_node is not None:
parent = current_node
if current_node.key == new_key:

raise ValueError(f'Duplicate key ”{new_key}” not allowed.')
if current_node.key < new_key:

current_node = current_node.right
elif current_node.key > new_key:

current_node = current_node.left

new_node = Node(key=new_key, parent=parent)
if parent is None:

self.root = new_node
elif parent.key < new_key:

parent.right = new_node
else:

parent.left = new_node

Insertion, Analyzed

▶ Worst case: Θ(ℎ), where ℎ is height of tree.

Deletion

▶ Given: a key in the BST.

▶ Modify: the BST, deleting the key.

▶ Must maintain the BST properties.

▶ This is a little trickier.

Deletion: Case 1 (Easy)

▶ Delete 36 from the BST.
42

25

20

1 24

40

36

70

65

67

72

Deletion: Case 2 (Also Easy)

▶ Exercise: Delete 65 from the BST.
42

25

20

1 24

40

36

70

65

67

72

Deletion: Case 3 (Tricky)

▶ Delete 42 from the BST.
42

25

20

1 24

40

36

70

65

67

72

Deletion

▶ If node has no children (leaf), easy.

▶ If node has one child, also easy.

▶ Otherwise, a little trickier.

▶ Idea: rotate4 node to bottom, preserving BST.
When it is a leaf or has one child, delete it.

4Most books take a different approach with the same time complexity.

(Right) Rotation

𝑥

𝐶

𝑝

𝑢

𝐴 𝐵

→

(Left) Rotation

𝑥

𝐶

𝑝

𝑢

𝐴 𝐵

→

Claim

Left rotate and right rotate preserve the
BST property.

def _right_rotate(self, x):
u = x.left
B = u.right
C = x.right
p = x.parent

x.left = B
if B is not None: B.parent = x

u.right = x
x.parent = u

u.parent = p

if p is None:
self.root = u

elif p.left is x:
p.left = u

else:
p.right = u

Deletion Analyzed

▶ Each rotate takes Θ(1) time.

▶ 𝑂(ℎ) rotations until node becomes leaf.

▶ So Θ(ℎ) time in the worst case.

Main Idea

Insertion, deletion, and querying all take Θ(ℎ) time
in the worst case, where ℎ is the height of the tree.

Lecture 4 | Part 3

Balanced and Unbalanced BSTs

Binary Tree Height
▶ In case of very balanced tree, ℎ grows
logarithmically with 𝑛.
▶ ℎ = Θ(log 𝑛)
▶ Query, insertion, deletion take worst case Θ(log 𝑛)
time.

42

25

20

1 24

40

36

70

65

61 67

72

70

Binary Tree Height

▶ In the case of very unbalanced tree, ℎ grows
linearly with 𝑛.
▶ ℎ = Θ(log 𝑛)
▶ Query, insertion, deletion take worst case Θ(𝑛) time.

1

20

24

25

Unbalanced Trees

▶ Occurs if we insert items in (close to) sorted or
reverse sorted order.

▶ This is a common situation in practice.

▶ Example: ocean temperatures measured at
Scripps pier over the course of a month.
▶ 62, 64, 65, 66, 67, 68, 69, 70, 68, 65, 64, 62, ...

Example

▶ Insert 1, 2, 3, 4, 5, 6, 7, 8 (in that order).

Time Complexities

query Θ(ℎ)
insertion Θ(ℎ)

Where ℎ is height, and ℎ = Ω(log 𝑛) and ℎ = 𝑂(𝑛).

Time Complexities (Balanced)

query 𝑂(log 𝑛)
insertion 𝑂(log 𝑛)

Where ℎ is height, and ℎ = Ω(log 𝑛) and ℎ = 𝑂(𝑛).

Worst Case Time Complexities
(Unbalanced)

query Θ(𝑛)
insertion Θ(𝑛)

▶ The worst case is bad.
▶ Worse than using a sorted array!

▶ The worst case is not rare.

Main Idea

The operations take linear time in the worst case
unlesswe can somehow ensure that the tree is bal-
anced.

Lecture 4 | Part 4

Range Queries, Max, and Min

Why use a BST?

▶ Even assuming a balanced tree, BSTs seem worse
than hash tables.

BST Hash Table5

query 𝑂(log 𝑛) Θ(1)
insertion 𝑂(log 𝑛) Θ(1)

▶ So when are BSTs better?
5Average case times reported.

Max/Min

▶ Consider finding the maximum element.

▶ Hash tables: Θ(𝑛); must loop through all bins.

▶ BST: Θ(ℎ), which is 𝑂(log 𝑛) if balanced

Example

55

12

5 43

20

90

65

60 70

99

Main Idea

Keeping track of the maximum can be done effi-
ciently in any stream of numbers, provided that
there are only insertions. But if deletions are al-
lowed, BSTs can find the next maximum efficiently.

Exercise

How well do heaps work for this problem? Are they
better? In what sense?

Range Queries

▶ Given: a collection and an interval [𝑎, 𝑏]

▶ Retrieve: all elements in the interval.

▶ Example:
▶ collection: 55, 12, 5, 43, 20, 90, 65, 99, 60, 70
▶ interval: [1, 30]
▶ result: 5, 12, 20

Exercise

How quickly can this be performed with a hash ta-
ble?

Range Queries in BST

▶ Definitions:
▶ The ceiling of 𝑥 in a BST is the smallest key ≥ 𝑥.
▶ The successor of node 𝑢 is the smallest node > 𝑥.

▶ Strategy:
▶ Find the floor of 𝑎
▶ Repeatedly find the successor until > 𝑏

Example

55

12

5 43

20

90

65

60 70

99

Range Queries

▶ ceiling and successor both take 𝑂(ℎ) = 𝑂(log 𝑛) in
balanced trees

▶ If the are 𝑘 elements in the range, calling
successor 𝑘 times gives complexity 𝑂(𝑘 log 𝑛).

