
Lecture 4 | Part 1

Dynamic Sets and Hashing

Dynamic Set▶ One of the most useful abstract data types.▶ A collection of unique keys which supports:▶ insertion and deletion▶ membership queries: x in set▶ Very similar to dictionary.

Implementation #1▶ Store 𝑛 elements in a dynamic array.▶ Initial cost: Θ(𝑛).▶ Query: linear search, 𝑂(𝑛).▶ Insertion: Θ(1) amortized.

Implementation #2▶ Store 𝑛 elements in a sorted dynamic array.▶ Initial cost: 𝑂(𝑛 log 𝑛).▶ Query: binary search, Θ(log 𝑛).▶ Insertion: 𝑂(𝑛)▶ Must maintain sorted order, involves copies.

Better Implementation▶ Store 𝑛 elements in a hash table.▶ Initial cost: Θ(𝑛)1.▶ Query: Θ(1).▶ Insertion: Θ(1).
1All time complexities are average case.

Today’s Lecture▶ We’ll review hashing.▶ See where hashing is not the right thing to do.▶ Review binary search trees as an alternative.▶ Next lecture: introduce treaps.

Hashing▶ One of the most important ideas in CS.▶ Tons of uses:▶ Verifying message integrity.▶ Fast queries on a large data set.▶ Identify if file has changed in version control.

Hash Function▶ A hash function takes a (large) object and
returns a (smaller) “fingerprint” of that object.

How?▶ Looking at certain bits, combining them in ways
that look random.

Hash Function Properties▶ Hashing same thing twice returns the same hash.▶ Unlikely that different things have same
fingerprint.▶ But not impossible!

Example▶ MD5 is a cryptographic hash function.▶ Hard to “reverse engineer” input from hash.▶ Returns a really large number in hex.

a741d8524a853cf83ca21eabf8cea190▶ Used to “fingerprint” whole files.

Example
> echo ”My name is Justin” | md5
a741d8524a853cf83ca21eabf8cea190
> echo ”My name is Justin” | md5
a741d8524a853cf83ca21eabf8cea190
> echo ”My name is Justin!” | md5
f11eed2391bbd0a5a2355397c089fafd

Another Use▶ Want to place images into 100 bins.▶ How do we decide which bin an image goes into?▶ Hash function!▶ Takes in an image.▶ Outputs a number in {1, 2, …, 100}.

Hashing for Data Scientists▶ Don’t need to know much about how hash
function works.▶ But should know how they are used.

Hash Tables▶ Create an array with pointers to 𝑚 linked lists.▶ Usually 𝑚 ≈ number of things you’ll be storing.▶ Create hash function to turn input into a number
in {0, 1, … ,𝑚 − 1}.

If1 = = =
- 3

W

[] 33

Example
hash('hello') == 3
hash('data') == 0
hash('science') == 4

0 1 2 3 4 𝑚 − 1…data well science

Collisions▶ The universe is the set of all possible inputs.▶ This is usually much larger than 𝑚 (even infinite).▶ Not possible to assign each input to a unique bin.▶ If hash(a) == hash(b), there is a collision.

Chaining▶ Collisions stored in same bin, in linked list.▶ Query: Hash to find bin, then linear search.

0 1 2 3 𝑚 − 1…

hash (a) = = harh(b)

hach (a) = = 3

b
a

The Idea▶ A good hash function will utilize all bins evenly.▶ Looks like uniform random distribution.▶ If 𝑚 ≈ 𝑛, then only a few elements in each bin.▶ As we add more elements, we need to add bins.

Average Case▶ 𝑛 elements in bin.▶ 𝑚 bins.▶ Assume elements placed randomly in bins2.▶ Expected bin size: 𝑛/𝑚.
2Of course, they are placed deterministically.

Analysis▶ Query:▶ Θ(1) to find bin▶ Θ(𝑛/𝑚) for linear search.▶ Total: Θ(1 + 𝑛/𝑚).▶ We usually guarantee 𝑚 = 𝑂(𝑛), ⟹ Θ(1).▶ Insertion: Θ(1).
-

X

Worst Case▶ Everything hashed to same bin.▶ Really unlikely!▶ Adversarial attack?▶ Query:▶ Θ(1) to find bin▶ Θ(𝑛) for linear search.▶ Total: Θ(𝑛).

Worst Case Insertion▶ We need to ensure that 𝑚 ≤ 𝑐 ⋅ 𝑛.▶ Otherwise, too many collisions.▶ If we add a bunch of elements, we’ll need to
increase 𝑚.▶ Increasing 𝑚 means allocating a new array,Θ(𝑚) = Θ(𝑛) time.

Main Idea
Hash tables support constant (expected) time in-
sertion and membership queries.

Hashing Downsides▶ Hashing is like magic. Constant time access?!▶ Comes at a cost: data now scattered “randomly”.▶ Examples:▶ find max/min in hash table.▶ range query: all strings between 'a' and 'c'▶ Must do a full loop over table!

Example
hash('apple') == 3
hash('bill nye') == 0
hash('cassowary') == 4

0 1 2 3 4 𝑚 − 1…

Lecture 4 | Part 2

Binary Search Trees

Binary Search Trees▶ An alternative way to implement dynamic sets.▶ Slightly slower insertion, query.▶ But preserves data in sorted order.

Binary Search Tree▶ A binary search tree (BST) is a binary tree that
satisfies the following for any node x:▶ if y is in 𝑥’s left subtree:

y.key ≤ x.key▶ if y is in 𝑥’s right subtree:
y.key ≥ x.key

Example▶ This is a BST.

55

12

5 43

20

90

99

Example▶ This is not a BST.

55

39

5 43

20

90

99

55

12

5

2

Exercise

Is this is a BST?

[35 , 12, Nove ,
5
,
Nave

,
N
, A
,

2
,
N
,
N
,
m
,
N
, Nig

Yes

Memory Representation▶ Each element stored as a node at an arbitrary
address in memory.▶ Each node has a key3 and pointers to left child,
right child, and parent nodes (if they exist).

6

12 33

3We’ll assume keys are unique, though this can be relaxed.

ptr
to right

is"Nature

In Python
class Node:

def __init__(self, key, parent=None):
self.key = key
self.parent = parent
self.left = None
self.right = None

class BinarySearchTree:
def __init__(self, root: Node):

self.root = root

In Python

6

12 33

root = Node(6)
n1 = Node(12, parent=root)
root.left = n1
n2 = Node(33, parent=root)
root.right = n2
tree = BinarySearchTree(root)

Operations on BSTs▶ We will want to:▶ traverse the nodes in sorted order by key▶ query a key (is it in the tree?)▶ insert a new key▶ delete an existing key

Inorder Traversal

42

25

20

1 24

40

41

70

65 72

71

Exercise
Implement inorder recursively so that it prints the
keys of the nodes in the tree in sorted order.

def inorder(node):
if node is not None:

inorder(node.left)
print(node.key)
inorder(node.right)

Inorder Traversal▶ Prints nodes in sorted order.▶ Visits each node once, Θ(1) time in the call.▶ Takes Θ(𝑛) time.

Queries▶ Given: a BST and a target, 𝑡.▶ Return: True or False, is the target in the
collection?

Queries▶ Is 36 in the tree? 65? 23?

42

25

20

1 24

40

36

70

65

60

72

Queries▶ Start walking from root.▶ If current node is:▶ equal to target, return True;▶ too large (> target), follow left edge;▶ too small (< target), follow right edge;▶ None, return False

Queries, in Python
def query(self, target):

current_node = self.root
while current_node is not None:

if current_node.key == target:
return current_node

elif current_node.key < target:
current_node = current_node.right

else:
current_node = current_node.left

return None

Queries, Analyzed▶ Best case: Θ(1).▶ Worst case: Θ(ℎ), where ℎ is height of tree.

Insertion▶ Given: a BST and a new key, 𝑘.▶ Modify: the BST, inserting 𝑘.▶ Must maintain the BST properties.

Insertion▶ Insert 23 into the BST.
42

25

20

1 24

40

36

70

65

60

72

def insert(self, new_key):
assume new_key is unique
current_node = self.root
parent = None

while current_node is not None:
parent = current_node
if current_node.key == new_key:

raise ValueError(f'Duplicate key ”{new_key}” not allowed.')
if current_node.key < new_key:

current_node = current_node.right
elif current_node.key > new_key:

current_node = current_node.left

new_node = Node(key=new_key, parent=parent)
if parent is None:

self.root = new_node
elif parent.key < new_key:

parent.right = new_node
else:

parent.left = new_node

Insertion, Analyzed▶ Worst case: Θ(ℎ), where ℎ is height of tree.

Deletion▶ Given: a key in the BST.▶ Modify: the BST, deleting the key.▶ Must maintain the BST properties.▶ This is a little trickier.

Deletion: Case 1 (Easy)▶ Delete 36 from the BST.
42

25

20

1 24

40

36

70

65

67

72

M

Deletion: Case 2 (Also Easy)▶ Exercise: Delete 65 from the BST.
42

25

20

1 24

40

36

70

65

67

72a
⑧

Deletion: Case 3 (Tricky)▶ Delete 42 from the BST.
42

25

20

1 24

40

36

70

65

67

72

Deletion▶ If node has no children (leaf), easy.▶ If node has one child, also easy.▶ Otherwise, a little trickier.▶ Idea: rotate4 node to bottom, preserving BST.
When it is a leaf or has one child, delete it.

4Most books take a different approach with the same time complexity.

(Right) Rotation

𝑥 𝐶
𝑝

𝑢𝐴 𝐵
→

④

don/
A /

B

/

(Left) Rotation

𝑥𝐶
𝑝

𝑢𝐴 𝐵
→

⑭

-
c

Claim

Left rotate and right rotate preserve the
BST property.

def _right_rotate(self, x):
u = x.left
B = u.right
C = x.right
p = x.parent

x.left = B
if B is not None: B.parent = x

u.right = x
x.parent = u

u.parent = p

if p is None:
self.root = u

elif p.left is x:
p.left = u

else:
p.right = u

Deletion Analyzed▶ Each rotate takes Θ(1) time.▶ 𝑂(ℎ) rotations until node becomes leaf.▶ So Θ(ℎ) time in the worst case.

Main Idea
Insertion, deletion, and querying all take Θ(ℎ) time
in the worst case, where ℎ is the height of the tree.

Lecture 4 | Part 3

Balanced and Unbalanced BSTs

Binary Tree Height▶ In case of very balanced tree, ℎ grows
logarithmically with 𝑛.▶ ℎ = Θ(log 𝑛)▶ Query, insertion, deletion take worst case Θ(log 𝑛)

time.

42

25

20

1 24

40

36

70

65

61 67

72

70

Binary Tree Height▶ In the case of very unbalanced tree, ℎ grows
linearly with 𝑛.▶ ℎ = Θ(log 𝑛)▶ Query, insertion, deletion take worst case Θ(𝑛) time.

1

20

24

25

Unbalanced Trees▶ Occurs if we insert items in (close to) sorted or
reverse sorted order.▶ This is a common situation in practice.▶ Example: ocean temperatures measured at
Scripps pier over the course of a month.▶ 62, 64, 65, 66, 67, 68, 69, 70, 68, 65, 64, 62, ...

Example▶ Insert 1, 2, 3, 4, 5, 6, 7, 8 (in that order).

O
...

Time Complexities

query Θ(ℎ)
insertion Θ(ℎ)

Where ℎ is height, and ℎ = Ω(log 𝑛) and ℎ = 𝑂(𝑛).

Time Complexities (Balanced)

query 𝑂(log 𝑛)
insertion 𝑂(log 𝑛)

Where ℎ is height, and ℎ = Ω(log 𝑛) and ℎ = 𝑂(𝑛).

Worst Case Time Complexities
(Unbalanced)

query Θ(𝑛)
insertion Θ(𝑛)▶ The worst case is bad.▶ Worse than using a sorted array!▶ The worst case is not rare.

Main Idea
The operations take linear time in the worst case
unlesswe can somehow ensure that the tree is bal-
anced.

Lecture 4 | Part 4

Range Queries, Max, and Min

Why use a BST?▶ Even assuming a balanced tree, BSTs seem worse
than hash tables.

BST Hash Table5

query 𝑂(log 𝑛) Θ(1)
insertion 𝑂(log 𝑛) Θ(1)▶ So when are BSTs better?

5Average case times reported.

Max/Min▶ Consider finding the maximum element.▶ Hash tables: Θ(𝑛); must loop through all bins.▶ BST: Θ(ℎ), which is 𝑂(log 𝑛) if balanced

Example

55

12

5 43

20

90

65

60 70

99

Main Idea
Keeping track of the maximum can be done effi-
ciently in any stream of numbers, provided that
there are only insertions. But if deletions are al-
lowed, BSTs can find the next maximum efficiently.

Exercise
How well do heaps work for this problem? Are they
better? In what sense?

Range Queries▶ Given: a collection and an interval [𝑎, 𝑏]▶ Retrieve: all elements in the interval.▶ Example:▶ collection: 55, 12, 5, 43, 20, 90, 65, 99, 60, 70▶ interval: [1, 30]▶ result: 5, 12, 20

Exercise
How quickly can this be performed with a hash ta-
ble?

Range Queries in BST▶ Definitions:▶ The ceiling of 𝑥 in a BST is the smallest key ≥ 𝑥.▶ The successor of node 𝑢 is the smallest node > 𝑥.▶ Strategy:▶ Find the floor of 𝑎▶ Repeatedly find the successor until > 𝑏

Example

55

12

5 43

20

90

65

60 70

99

Range Queries▶ ceiling and successor both take 𝑂(ℎ) = 𝑂(log 𝑛) in
balanced trees▶ If the are 𝑘 elements in the range, calling
successor 𝑘 times gives complexity 𝑂(𝑘 log 𝑛).

