DST 190 Lecture 4 | Part 1
Dynamic Sets and Hashing Dynamic Sets and Hashing

Dynamic Set

- One of the most useful abstract data types.
- A collection of unique keys which supports:
- insertion and deletion
- membership queries: x in set
- Very similar to dictionary.

Implementation \#1

- Store n elements in a dynamic array.
- Initial cost: $\Theta(n)$.
- Query: linear search, $O(n)$.
- Insertion: $\Theta(1)$ amortized.

Implementation \#2

- Store n elements in a sorted dynamic array.
- Initial cost: $O(n \log n)$.
- Query: binary search, $\Theta(\log n)$.
- Insertion: O(n)
- Must maintain sorted order, involves copies.

Better Implementation

- Store n elements in a hash table.
- Initial cost: $\Theta(n)^{1}$.
- Query: $\Theta(1)$.
- Insertion: $\Theta(1)$.
${ }^{1}$ All time complexities are average case.

Today's Lecture

- We'll review hashing.
- See where hashing is not the right thing to do.
- Review binary search trees as an alternative.
- Next lecture: introduce treaps.

Hashing

- One of the most important ideas in CS.
- Tons of uses:
- Verifying message integrity.
- Fast queries on a large data set.
- Identify if file has changed in version control.

Hash Function

- A hash function takes a (large) object and returns a (smaller) "fingerprint" of that object.

How?

- Looking at certain bits, combining them in ways that look random.

Hash Function Properties

- Hashing same thing twice returns the same hash.
- Unlikely that different things have same fingerprint.
- But not impossible!

Example

- MD5 is a cryptographic hash function.
> Hard to "reverse engineer" input from hash.
- Returns a really large number in hex.

> a741d8524a853cf83ca21eabf8cea190

- Used to "fingerprint" whole files.

Example

> echo "My name is Justin" | md5 a741d8524a853cf83ca21eabf8cea190 > echo "My name is Justin" | md5 a741d8524a853cf83ca21eabf8cea19。 > echo "My name is Justin!" | md5 f11eed2391bbdea5a2355397co89fafd

Another Use

- Want to place images into 100 bins.
- How do we decide which bin an image goes into?
- Hash function!
- Takes in an image.
$>$ Outputs a number in $\{1,2, \ldots, 100\}$.

Hashing for Data Scientists

- Don't need to know much about how hash function works.
- But should know how they are used.

$\left[f_{t}=--\right]$
 Hash Tables

- Create an array with pointers to m linked lists.
- Usually $m \approx$ number of things you'll be storing.
- Create hash function to turn input into a number in $\{0,1, \ldots, m-1\}$.

Example

$$
\text { hash('hello') == } 3
$$

hash('data') == 0
hash('science') == 4

Collisions

- The universe is the set of all possible inputs.
- This is usually much larger than m (even infinite).
- Not possible to assign each input to a unique bin.
- If hash(a) == hash(b), there is a collision.

$$
\begin{aligned}
& \operatorname{hash}(a)==\operatorname{harh}(b) \\
& \operatorname{hash}(a)==3 \quad \text { Chaining } \\
& \quad>\text { Collisions stored in same bin, in linked list. } \\
& \quad \text { Query: Hash to find bin, then linear search. } \\
& \\
& \\
& \\
& 0
\end{aligned}
$$

The Idea

- A good hash function will utilize all bins evenly. - Looks like uniform random distribution.
- If $m \approx n$, then only a few elements in each bin.
- As we add more elements, we need to add bins.

Average Case

- n elements in bin.
- mbins.
- Assume elements placed randomly in bins ${ }^{2}$.
- Expected bin size: n / m.
${ }^{2}$ Of course, they are placed deterministically.

Analysis

- Query:
$-\theta(1)$ to find bin
- $\Theta(n / m)$ for linear search.
- Total: $\Theta(1+n / m)$.
- We usually guarantee $m=\varnothing(n), \Longrightarrow \Theta(1)$.
- Insertion: $\Theta(1)$.

Worst Case

- Everything hashed to same bin.
- Really unlikely!
- Adversarial attack?
- Query:
$\theta(1)$ to find bin
$-\Theta(n)$ for linear search.
- Total: $\Theta(n)$.

Worst Case Insertion

- We need to ensure that $m \leq c \cdot n$.
\Rightarrow Otherwise, too many collisions.
- If we add a bunch of elements, we'll need to increase m.
- Increasing m means allocating a new array, $\Theta(m)=\Theta(n)$ time.

Main Idea

Hash tables support constant (expected) time insertion and membership queries.

Hashing Downsides

- Hashing is like magic. Constant time access?!
- Comes at a cost: data now scattered "randomly".
- Examples:
- find max/min in hash table.
> range query: all strings between 'a' and 'c'
- Must do a full loop over table!

Example

hash('apple') == 3
hash('bill nye') == 0
hash('cassowary') == 4

0	1	2	3	4	\cdots
$m-1$					

DSC 190
Lecture 4 | Part 2 Binary Search Trees

Binary Search Trees

- An alternative way to implement dynamic sets.
- Slightly slower insertion, query.
- But preserves data in sorted order.

Binary Search Tree

- A binary search tree (BST) is a binary tree that satisfies the following for any node x :
- if y is in x 's left subtree:

$$
y \cdot k e y \leq x \cdot k e y
$$

- if y is in $x^{\prime} s$ right subtree:

$$
y \cdot k e y \geq x \cdot k e y
$$

Example

This is a BST.

Example

This is not a BST.

Exercise
Is this is a BST? Yes.

Memory Representation

- Each element stored as a node at an arbitrary address in memory.
- Each node has a key ${ }^{3}$ and pointers to left child, right child, and parent nodes (if they exist).

${ }^{3}$ We'll assume keys are unique, though this can be relaxed.

In Python

class Node:

$$
\begin{aligned}
& \text { def } \quad \text { __init__(self, key, parent=None): } \\
& \text { self.key }=\text { key } \\
& \text { self.parent = parent } \\
& \text { self.left = None } \\
& \text { self.right }=\text { None }
\end{aligned}
$$

class BinarySearchTree:

$$
\begin{aligned}
& \text { def __init__(self, root: Node): } \\
& \text { self.root = root }
\end{aligned}
$$

In Python

Operations on BSTs

- We will want to:
\Rightarrow traverse the nodes in sorted order by key
\downarrow query a key (is it in the tree?)
$>$ insert a new key
> delete an existing key

Inorder Traversal

Exercise

Implement inorder recursively so that it prints the keys of the nodes in the tree in sorted order.
def inorder(node):
if node is not None:
inorder(node.left)
print(node.key)
inorder(node.right)

Inorder Traversal

- Prints nodes in sorted order.
- Visits each node once, $\Theta(1)$ time in the call.
- Takes $\Theta(n)$ time.

Queries

Given: a BST and a target, t.

Return: True or False, is the target in the collection?

Queries

- Is 36 in the tree? 65? 23?

Queries

- Start walking from root.
- If current node is:
- equal to target, return True;
> too large (> target), follow left edge;
> too small (< target), follow right edge;
- None, return False

Queries, in Python

```
def query(self, target):
    current_node = self.root
    while current_node is not None:
        if current_node.key == target:
        return current_node
        elif current_node.key < target:
        current_node = current_node.right
        else:
    current_node = current_node.left
    return None
```


Queries, Analyzed

- Best case: $\Theta(1)$.

Worst case: $\Theta(h)$, where h is height of tree.

Insertion

- Given: a BST and a new key, k.
- Modify: the BST, inserting k.
- Must maintain the BST properties.

Insertion

- Insert 23 into the BST.


```
def insert(self, new_key):
    # assume new_key is unique
    current_node = self.root
    parent = None
    while current_node is not None:
    parent = current_node
    if current_node.key == new_key:
        raise ValueError(f'Duplicate key "{new_key}" not allowed.')
    if current_node.key < new_key:
                current_node = current_node.right
    elif current_node.key > new_key:
        current_node = current_node.left
    new_node = Node(key=new_key, parent=parent)
    if parent is None:
    self.root = new_node
    elif parent.key < new_key:
        parent.right = new_node
    else:
        parent.left = new_node
```


Insertion, Analyzed

Worst case: $\Theta(h)$, where h is height of tree.

Deletion

- Given: a key in the BST.
- Modify: the BST, deleting the key.
- Must maintain the BST properties.
- This is a little trickier.

Deletion: Case 1 (Easy)

- Delete 36 from the BST.

Deletion: Case 2 (Also Easy)

- Exercise: Delete 65 from the BST.

Deletion: Case 3 (Tricky)

Delete 42 from the BST.

Deletion

- If node has no children (leaf), easy.
- If node has one child, also easy.
- Otherwise, a little trickier.
- Idea: rotate ${ }^{4}$ node to bottom, preserving BST. When it is a leaf or has one child, delete it.

[^0]
(Right) Rotation

(Left) Rotation

Claim

Left rotate and right rotate preserve the BST property.

```
def _right_rotate(self, x):
    u = x.left
    B = u.right
    C = x.right
    p = x.parent
    x.left = B
    if B is not None: B.parent = x
    u.right = x
    x.parent = u
    u.parent = p
    if p is None:
        self.root = u
    elif p.left is x:
        p.left = u
    else:
        p.right = u
```


Deletion Analyzed

- Each rotate takes $\Theta(1)$ time.
$\Rightarrow O(h)$ rotations until node becomes leaf.
> So $\Theta(h)$ time in the worst case.

Main Idea

Insertion, deletion, and querying all take $\Theta(h)$ time in the worst case, where h is the height of the tree.

DEC 190
Lecture 4 | Part 3
Balanced and Unbalanced BETs

Binary Tree Height

- In case of very balanced tree, h grows logarithmically with n.
$h=\Theta(\log n)$
- Query, insertion, deletion take worst case $\Theta(\log n)$ time.

Binary Tree Height

- In the case of very unbalanced tree, h grows linearly with n.
- $h=\theta(\log n)$
- Query, insertion, deletion take worst case $\Theta(n)$ time.

Unbalanced Trees

- Occurs if we insert items in (close to) sorted or reverse sorted order.
- This is a common situation in practice.
- Example: ocean temperatures measured at Scripps pier over the course of a month.
- $62,64,65,66,67,68,69,70,68,65,64,62, \ldots$

Example
Insert 1, 2, 3, 4, 5, 6, 7, 8 (in that order).

Time Complexities

query $\quad \Theta(h)$ insertion $\Theta(h)$

Where h is height, and $h=\Omega(\log n)$ and $h=O(n)$.

Time Complexities (Balanced)

query	$O(\log n)$
insertion	$O(\log n)$

Where h is height, and $h=\Omega(\log n)$ and $h=O(n)$.

Worst Case Time Complexities (Unbalanced)

query	$\Theta(n)$
insertion	$\Theta(n)$

- The worst case is bad.
- Worse than using a sorted array!
- The worst case is not rare.

Main Idea

The operations take linear time in the worst case unless we can somehow ensure that the tree is balanced.

DSC 190
Lecture 4 | Part 4
Range Queries, Max, and Min

Why use a BST?

- Even assuming a balanced tree, BSTs seem worse than hash tables.

	BST	Hash Table 5
query	$O(\log n)$	$\Theta(1)$
insertion	$O(\log n)$	$\Theta(1)$

- So when are BSTs better?
${ }^{5}$ Average case times reported.

Max/Min

- Consider finding the maximum element.
- Hash tables: $\Theta(n)$; must loop through all bins.
- BST: $\Theta(h)$, which is $O(\log n)$ if balanced

Example

Main Idea

Keeping track of the maximum can be done efficiently in any stream of numbers, provided that there are only insertions. But if deletions are allowed, BSTs can find the next maximum efficiently.

Exercise

How well do heaps work for this problem? Are they better? In what sense?

Range Queries

- Given: a collection and an interval $[a, b]$
- Retrieve: all elements in the interval.
- Example:
- collection: 55, 12, 5, 43, 20, 90, 65, 99, 60, 70
- interval: [1,30]
- result: 5, 12, 20

Exercise

How quickly can this be performed with a hash table?

Range Queries in BST

- Definitions:
- The ceiling of x in a BST is the smallest key $\geq x$.
- The successor of node u is the smallest node $>x$.
- Strategy:
- Find the floor of a
- Repeatedly find the successor until > b

Example

Range Queries

- ceiling and successor both take $O(h)=O(\log n)$ in balanced trees
- If the are k elements in the range, calling successor k times gives complexity $O(k \log n)$.

[^0]: ${ }^{4}$ Most books take a different approach with the same time complexity.

