
DSC 190 - Discussion 03

Problem 1.

When performing a search for the k nearest neighbors to a query point, we need to keep track of the k
smallest distances found so far. We can do so using a heap.

Fill in the class below so that it keeps track of the k smallest numbers inserted while maintaining a heap
whose size is never larger than k + 1.

class KSmallest:

def __init__(self, k):
...

def insert(self, number):
"""Insert a number."""
...

def max(self):
"""Return the largest of the k numbers stored."""

def as_list(self):
"""Return the k elements as a list."""
...

Problem 2.

kNN search requires that we find the k nearest neighbours when we reach a leaf node in our search.

Fill in the brute force search function below to find k nearest neighbours to a point for a given leaf node.

def brute_force_knn_search(data, p, k):
"""
Find nearest neighbour
Parameters:
data : np.ndarray

An n X d array of points
p : np.ndarray

A d-array representing the query point
k : int

The number of neighbours to find

Returns:
knn : np.ndarray

The k X d array of form [distance, point]
where point is a d-array and distance is a float value
represent distance to query point p

"""

1


