DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 18 Part 1

The Count-Min Sketch

Last Time: Membership Queries

You've collected 1 billion tweets."

Goal: given the text of a new tweet, is it already
in the data set?

Data set is too large to fit into memory.

Our solution: Bloom filters.

"This is about two days of activity.

Today: Frequencies
You've collected 1 billion tweets.

Goal: given the text of a tweet, how many times
have we seen it?

Data set is too large to fit into memory.

Today's solution: the Count-Min Sketch.

Frequency Counts
Given: a collection X = {xq, X, ..., X, }-

Support:
.count(x): Number of times x appears.
.increment(x): Increment count of x

Simple Solution

Use hash tables: dictionary of counts.

class SetCounts:

def __init__(self):
self.counts = {}

def increment(self, x):
if x not in self.counts:
self.counts[x] = 1
else:
self.counts[x] += 1

def count(self, x):
try:
return self.counts[x]
except KeyError:
return o

Problem: Memory Usage

Requires storing the keys.

Example: store approximately 1 billion tweets
(100 GB).

Can't fit the dictionary in memory.

A Fix
Why do we store all of the keys?

To resolve collisions.

What if we ignore collisions?

Hashing Into Counters

Use a size ¢ (c < n) array

of integers (counts).

"data”
< hash(s) "surf” .increment(x):
"sand” arr[hash(x)] += 1
"surf” 3 "surf”
"sand” 8 "surf” .count(x):
"data” 5 "beach” return arr[hash(x)]
"sun” 1 "data”
"beach” 5 "beach”
"surf”

”SUn"

Hashing Into Counters

Use a size ¢ (c < n) array

of integers (counts).

"data”
"surf” .increment(x):
S h
ash(s) "sand” arr[hash(x)] += 1
"surf” 3 "surf”
"sand” 8 "surf” .count(x):
"data” 5 "beach” return arr[hash(x)]
"sun” 1 "data”
"beach” 5 "beach Can be wrong!
surf

”SUn"

Biased Estimate

The count returned from this approach is biased
high.

Can we do better?

Idea: multiple hashing. Perform previous R
times.

This is the count-min sketch.

Count-Min Sketch

Use k arrays of counts,
each with own
independent hash

functions.

"data” .

s hash 1(s) hash 2(s) "surf” .increment(x): Set
- - "sand” arr_ia[hash_1(x)] += 1,

"surf” 3 7 “surf” arr_2[hash_2(x)] += 1,
"sand” 8 7 surf veny
”n ” "beach"
"giﬁf ? ‘9‘ "iara” arr_k[hash_k(x)] += 1.
"beach” 5 6 "beach”

"surf”

"sun”

Count-Min Sketch

0 1 2 3 4 5 6 71 8 9 Use k arrays of counts,
each with own
independent hash

functions.

"data”
s hash_1(s) hash_2(s) ”5‘“"2" .count(x): Return the

san o o
"eurf” 3 ; " ourf” minimum of
"sand” 8 7 "surf” arr_i[hash_1(x)],
"data” 5 4 "beach” arr_2[hash_2(x)1, ..,
"sun” 1 9 "data” arr_k[hash_k(x)1.
"beach” 5 6 beach

"surf”

"sun”

Returning the Minimum Count
The count is still biased high.

But by returning the minimum, bias is reduced.

Memory Usage
Each counter cell stores an integer (64 bits).

Total size:
64 x C - R bits

c and Rk should be chosen to match prescribed
level of error.

DSC /70

DATA STRUCTURES § ALELORITHMS
Lecture 18 @ Part 2

Designing a Count-Min Sketch

Error Rate

Count-min sketch is a probabilistic data

structure.
Returns the wrong answer sometimes.

How wrong is it, probably?

And how does this depend on c and R?

Notation

We see n items, record frequencies in count-min
sketch.

For any item x, let f, be its true frequency.
f = arr_i[hash_i(x)] is estimated frequency
of x according to row i. f, is aggregate estimate:

fx = minif)(<i)'

Note: fi) > f,

Absolute and Relative Error

Absolute error: fx - i
This will grow as collection size n — oo.

Relative error: (f, - f,)/f
We're more interested in this. Want it to be small.

If f, = ©(n), we want:

(fo-foln<e = f,-f,<en

Analysis

We'll first look at the expected value of the
estimate in a single row.

Then, we'll compute the probability that the
aggregate estimate is much larger than the true
value.

Expected Value
Fix an object, x, and a row i.
E[f{] = expected count in x's bin

= f, + E[tot. frequency of colliding items y # x]

= f, + ny- P(hash(y) == hash(x))

y#X

=fx+%zfy5fx+%

y#X

Expected Value
We found: E[f{)] < f, + 2.

Is this good or bad?
Suppose f, = p,n, where p, €[0,1].

Absolute error is ©(n).
But relative error is 7.

Independent of n!

Extreme Values
Goal: show unlikely for f) to be much larger than f,

How large do we need to make a so that
P(f{)-f, >a)<1/2?

From Markov's inequality:

E[f0]2 f, + a-P(FO) - f, > a)
= fX + a/2

We know E[f(] < f, +2, s0 a < 2n/c.

Extreme Values
We've shown that P(f{) - f, > 2n/c) < 1/2.
This is just for the ith row.
Minimum is > 2n/c only if every row is > 2n/c.

Probability of this happening:

1=1

ﬁ P(fi) - f, >2n/c) < (%)k

Extreme Values

Let fx be the aggregate estimate. We have shown:
- 1\R
P(f, - f, > 2n/c) < (i)

Want fx -f, <& Setc=2/¢.

To ensure that an over-estimate larger than ¢
occurs with probability 6, set
1

(§)k=6 — k=log, ¢

Designing a Count-Min Sketch

Pick your € and 6: “I want overestimates to be
smaller than €n at least 1 - 6 percent of the time!

?

Set number of bucketsto c = 2/¢

Set number of rows/hash functions to
k = log, 1/6.

Example

We have 1 billion tweets, want to count number
of occurrences for each.

Assume each tweet requires 800 bits.

dict: around 100 gigabytes, assuming = 1 billion
unique

Example

Instead, use a count-min sketch. Say, € =.001
and 6 =.01.

“I want overestimates to be smaller than 1% of the
total number of tweets at least 99% of the time.”

c=2/e=2000
kR=1log,1/6=7.

Memory: 7 x 2000 x 64 bits = 112 kilobytes

Example

Now supposed you have 42 quadrillion tweets.
“I want overestimates to be smaller than 1% of the
total number of tweets at least 99% of the time.”

dict: 4.2 exabytes

count-min sketch: ?

Example

Now supposed you have 42 quadrillion tweets.
“I want overestimates to be smaller than 1% of the
total number of tweets at least 99% of the time.”

dict: 4.2 exabytes

count-min sketch: 112 kilobytes

How?

The relative error € of a count-min sketch does
not depend on n!

The n is “hidden” inside the relative error:

~

fx_fx<£n

Count-Min Sketch and Bloom Filters

The Count-Min Sketch and Bloom Filters are both
probabilistic data structures.

Both make use of multiple hashing.

Why does CMS take much less memory?

Less Memory

Why does a CMS use less memory than a Bloom
filter?

The problem it is solving is easier.

Bloom filter: big difference between seeing an
element once and never seeing it.

Count-Min sketch: essentially no difference.

DPSC /70

DATA STRUCTURES § ALLORITHMS

Lecture 18 Part 3
The End

w
=
o
a
—
=
o
=

