DST 190
Lecture 18 | Part 1 The Count-Min Sketch

Last Time: Membership Queries

- You've collected 1 billion tweets. ${ }^{1}$
- Goal: given the text of a new tweet, is it already in the data set?
- Data set is too large to fit into memory.
- Our solution: Bloom filters.
${ }^{1}$ This is about two days of activity.

Today: Frequencies

- You've collected 1 billion tweets.
- Goal: given the text of a tweet, how many times have we seen it?
- Data set is too large to fit into memory.
- Today's solution: the Count-Min Sketch.

Frequency Counts

- Given: a collection $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
- Support:
$>$. count (x) : Number of times x appears.
$>$.increment (x): Increment count of x

Simple Solution

- Use hash tables: dictionary of counts.
class SetCounts:

```
def __init__(self):
    self.counts = {}
    def increment(self, x):
        if x not in self.counts:
        self.counts[x] = 1
        else:
            self.counts[x] += 1
    def count(self, x):
        try:
        return self.counts[x]
        except KeyError:
        return ©
```


Problem: Memory Usage

- Requires storing the keys.
- Example: store approximately 1 billion tweets (100 GB).
- Can't fit the dictionary in memory.

A Fix

Why do we store all of the keys?

- To resolve collisions.
- What if we ignore collisions?

Hashing Into Counters

- Use a size $c(c \ll n)$ array of integers (counts).
- .increment (x): $\operatorname{arr}[h a s h(x)]+=1$
- .count(x):
return arr[hash(x)]

Hashing Into Counters

- Use a size $c(c \ll n)$ array of integers (counts).
- .increment (x): $\operatorname{arr}[h a s h(x)]+=1$
- .count(x):
return arr[hash(x)]
- Can be wrong!

Biased Estimate

- The count returned from this approach is biased high.
- Can we do better?
- Idea: multiple hashing. Perform previous k times.
- This is the count-min sketch.

Count-Min Sketch

- Use k arrays of counts, each with own independent hash functions.

$$
\begin{aligned}
& \text { "data" } \\
& \text { "surf" } \\
& \text { "sand" } \\
& \text { "surf" } \\
& \text { "surf" } \\
& \text { "beach" } \\
& \text { "data" } \\
& \text { "beach" } \\
& \text { "surf" } \\
& \text { "sun" }
\end{aligned}
$$

> .increment (x): Set arr_1[hash_1(x)] += 1, arr_2[hash_2(x)] += 1 , \cdots, $\operatorname{arr} _k\left[h a s h _k(x)\right]+=1$.

Count-Min Sketch

- Use k arrays of counts, each with own
independent hash functions.

$$
\begin{aligned}
& \text { "data" } \\
& \text { "surf" } \\
& \text { "sand" } \\
& \text { "surf" } \\
& \text { "surf" } \\
& \text { "beach" } \\
& \text { "data" } \\
& \text { "beach" } \\
& \text { "surf" } \\
& \text { "sun" }
\end{aligned}
$$

- .count (x): Return the minimum of
arr_1[hash_1(x)], arr_2[hash_2(x)], ..., arr_k[hash_k(x)].

Returning the Minimum Count

- The count is still biased high.
- But by returning the minimum, bias is reduced.

Memory Usage

- Each counter cell stores an integer (64 bits).
- Total size:

$$
64 \times c \cdot k \text { bits }
$$

- c and k should be chosen to match prescribed level of error.

DSC 190 Lecture 18 | Part 2
Designing a Count-Min Sketch

Error Rate

- Count-min sketch is a probabilistic data structure.
- Returns the wrong answer sometimes.
- How wrong is it, probably?
- And how does this depend on c and k ?

Notation

- We see n items, record frequencies in count-min sketch.
- For any item x, let f_{x} be its true frequency.
- $\hat{f}_{x}^{(i)} \equiv \operatorname{arr} r_{-} i\left[h a s h _i(x)\right]$ is estimated frequency of x according to row $i . \hat{f}_{x}$ is aggregate estimate: $\hat{f}_{x}=\min _{i} \hat{f}_{x}^{(i)}$.

Note: $\hat{f}_{x}^{(i)} \geq f_{x}$

Absolute and Relative Error

- Absolute error: $\hat{f}_{x}-f_{x}$
- This will grow as collection size $n \rightarrow \infty$.
- Relative error: $\left(\hat{f}_{x}-f_{x}\right) / f_{x}$
\Rightarrow We're more interested in this. Want it to be small.
> If $f_{x}=\Theta(n)$, we want:

$$
\left(\hat{f}_{x}-f_{x}\right) / n<\varepsilon \quad \Longrightarrow \quad \hat{f}_{x}-f_{x}<\varepsilon n
$$

Analysis

- We'll first look at the expected value of the estimate in a single row.
- Then, we'll compute the probability that the aggregate estimate is much larger than the true value.

Expected Value

- Fix an object, x, and a row i.
$\mathbb{E}\left[\hat{f}_{x}^{(i)}\right]=$ expected count in x^{\prime} s bin

$$
\begin{aligned}
& =f_{x}+\mathbb{E}[\text { tot. frequency of colliding items } y \neq x] \\
& =f_{x}+\sum_{y \neq x} f_{y} \cdot \mathbb{P}(\text { hash }(y)==\text { hash }(x)) \\
& =f_{x}+\frac{1}{c} \sum_{y \neq x} f_{y} \leq f_{x}+\frac{n}{c}
\end{aligned}
$$

Expected Value

- We found: $\mathbb{E}\left[\hat{f}_{x}^{(i)}\right] \leq f_{x}+\frac{n}{c}$.
- Is this good or bad?
- Suppose $f_{x}=p_{x} n$, where $p_{x} \in[0,1]$.
- Absolute error is $\Theta(n)$.
- But relative error is $\frac{1}{p c}$.
> Independent of n !

Extreme Values

- Goal: show unlikely for $\hat{f}_{x}^{(i)}$ to be much larger than f_{x}
- How large do we need to make α so that $\mathbb{P}\left(\hat{f}_{x}^{(i)}-f_{x}>\alpha\right)<1 / 2$?
- From Markov's inequality:

$$
\begin{aligned}
\mathbb{E}\left[\hat{f}_{x}^{(i)}\right] & \geq f_{x}+\alpha \cdot P\left(\hat{f}_{x}^{(i)}-f_{x}>\alpha\right) \\
& =f_{x}+\alpha / 2
\end{aligned}
$$

\Rightarrow We know $\mathbb{E}\left[\hat{f}_{x}^{(i)}\right] \leq f_{x}+\frac{n}{c}$, so $\alpha<2 n / c$.

Extreme Values

- We've shown that $\mathbb{P}\left(\hat{f}_{x}^{(i)}-f_{x}>2 n / c\right)<1 / 2$.
- This is just for the ith row.
- Minimum is $>2 n / c$ only if every row is $>2 n / c$.
- Probability of this happening:

$$
\prod_{i=1}^{k} \mathbb{P}\left(\hat{f}_{x}^{(i)}-f_{x}>2 n / c\right) \leq\left(\frac{1}{2}\right)^{k}
$$

Extreme Values

- Let \hat{f}_{x} be the aggregate estimate. We have shown:

$$
\mathbb{P}\left(\hat{f}_{x}-f_{x}>2 n / c\right)<\left(\frac{1}{2}\right)^{k}
$$

- Want $\hat{f}_{x}-f_{x}<\varepsilon$. Set $c=2 / \varepsilon$.
- To ensure that an over-estimate larger than ε occurs with probability δ, set

$$
\left(\frac{1}{2}\right)^{k}=\delta \quad \Longrightarrow \quad k=\log _{2} \frac{1}{\delta}
$$

Designing a Count-Min Sketch

- Pick your ε and δ : "I want overestimates to be smaller than ε at least $1-\delta$ percent of the time."
- Set number of buckets to $c=2 / \varepsilon$
- Set number of rows/hash functions to $k=\log _{2} 1 / \delta$.

Example

- We have 1 billion tweets, want to count number of occurrences for each.
- Assume each tweet requires 800 bits.
- dict: around 100 gigabytes, assuming ≈ 1 billion unique

Example

- Instead, use a count-min sketch. Say, $\varepsilon=.001$ and $\delta=.01$.
- "I want overestimates to be smaller than $.1 \%$ of the total number of tweets at least 99% of the time."
$\Rightarrow c=2 / \varepsilon=2000$
$\Rightarrow k=\log _{2} 1 / \delta \approx 7$.
- Memory: $7 \times 2000 \times 64$ bits $=112$ kilobytes

Example

- Now supposed you have 42 quadrillion tweets.
- "I want overestimates to be smaller than $.1 \%$ of the total number of tweets at least 99% of the time."
> dict: 4.2 exabytes
> count-min sketch: ?

Example

- Now supposed you have 42 quadrillion tweets. - "I want overestimates to be smaller than .1\% of the total number of tweets at least 99% of the time."
- dict: 4.2 exabytes
- count-min sketch: 112 kilobytes

How?

- The relative error ε of a count-min sketch does not depend on n !
- The n is "hidden" inside the relative error:

$$
\hat{f}_{x}-f_{x}<\varepsilon n
$$

Count-Min Sketch and Bloom Filters

- The Count-Min Sketch and Bloom Filters are both probabilistic data structures.
- Both make use of multiple hashing.
- Why does CMS take much less memory?

Less Memory

- Why does a CMS use less memory than a Bloom filter?
- The problem it is solving is easier.
- Bloom filter: big difference between seeing an element once and never seeing it.
- Count-Min sketch: essentially no difference.

DEC 190 Lecture $18 \mid$ Part
The End

