
Lecture 18 | Part 1

The Count-Min Sketch

Last Time: Membership Queries

▶ You’ve collected 1 billion tweets.1

▶ Goal: given the text of a new tweet, is it already
in the data set?

▶ Data set is too large to fit into memory.

▶ Our solution: Bloom filters.

1This is about two days of activity.

Today: Frequencies

▶ You’ve collected 1 billion tweets.

▶ Goal: given the text of a tweet, how many times
have we seen it?

▶ Data set is too large to fit into memory.

▶ Today’s solution: the Count-Min Sketch.

Frequency Counts

▶ Given: a collection 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}.

▶ Support:
▶ .count(x): Number of times x appears.
▶ .increment(x): Increment count of x

Simple Solution
▶ Use hash tables: dictionary of counts.

class SetCounts:

def __init__(self):
self.counts = {}

def increment(self, x):
if x not in self.counts:

self.counts[x] = 1
else:

self.counts[x] += 1

def count(self, x):
try:

return self.counts[x]
except KeyError:

return 0

Problem: Memory Usage

▶ Requires storing the keys.

▶ Example: store approximately 1 billion tweets
(100 GB).

▶ Can’t fit the dictionary in memory.

A Fix

▶ Why do we store all of the keys?

▶ To resolve collisions.

▶ What if we ignore collisions?

Hashing Into Counters
0 1 2 3 4 5 6 7 8 9

s hash(s)

”surf” 3
”sand” 8
”data” 5
”sun” 1
”beach” 5

”data”
”surf”
”sand”
”surf”
”surf”
”beach”
”data”
”beach”
”surf”
”sun”

▶ Use a size 𝑐 (𝑐 ≪ 𝑛) array
of integers (counts).

▶ .increment(x):
arr[hash(x)] += 1

▶ .count(x):
return arr[hash(x)]

▶ Can be wrong!

Hashing Into Counters
0 1 2 3 4 5 6 7 8 9

s hash(s)

”surf” 3
”sand” 8
”data” 5
”sun” 1
”beach” 5

”data”
”surf”
”sand”
”surf”
”surf”
”beach”
”data”
”beach”
”surf”
”sun”

▶ Use a size 𝑐 (𝑐 ≪ 𝑛) array
of integers (counts).

▶ .increment(x):
arr[hash(x)] += 1

▶ .count(x):
return arr[hash(x)]

▶ Can be wrong!

Biased Estimate

▶ The count returned from this approach is biased
high.

▶ Can we do better?

▶ Idea: multiple hashing. Perform previous 𝑘
times.

▶ This is the count-min sketch.

Count-Min Sketch
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

s hash_1(s) hash_2(s)

”surf” 3 7
”sand” 8 7
”data” 5 4
”sun” 1 9
”beach” 5 6

”data”
”surf”
”sand”
”surf”
”surf”
”beach”
”data”
”beach”
”surf”
”sun”

▶ Use 𝑘 arrays of counts,
each with own
independent hash
functions.

▶ .increment(x): Set
arr_1[hash_1(x)] += 1,
arr_2[hash_2(x)] += 1,
…,
arr_k[hash_k(x)] += 1.

Count-Min Sketch
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

s hash_1(s) hash_2(s)

”surf” 3 7
”sand” 8 7
”data” 5 4
”sun” 1 9
”beach” 5 6

”data”
”surf”
”sand”
”surf”
”surf”
”beach”
”data”
”beach”
”surf”
”sun”

▶ Use 𝑘 arrays of counts,
each with own
independent hash
functions.

▶ .count(x): Return the
minimum of
arr_1[hash_1(x)],
arr_2[hash_2(x)], …,
arr_k[hash_k(x)].

Returning the Minimum Count

▶ The count is still biased high.

▶ But by returning the minimum, bias is reduced.

Memory Usage

▶ Each counter cell stores an integer (64 bits).

▶ Total size:
64 × 𝑐 ⋅ 𝑘 bits

▶ 𝑐 and 𝑘 should be chosen to match prescribed
level of error.

Lecture 18 | Part 2

Designing a Count-Min Sketch

Error Rate

▶ Count-min sketch is a probabilistic data
structure.
▶ Returns the wrong answer sometimes.

▶ How wrong is it, probably?

▶ And how does this depend on 𝑐 and 𝑘?

Notation

▶ We see 𝑛 items, record frequencies in count-min
sketch.

▶ For any item 𝑥, let 𝑓𝑥 be its true frequency.

▶ ̂𝑓 (𝑖)𝑥 ≡ arr_i[hash_i(x)] is estimated frequency
of 𝑥 according to row 𝑖. ̂𝑓𝑥 is aggregate estimate:
̂𝑓𝑥 = min𝑖 ̂𝑓 (𝑖)𝑥 .

▶ Note: ̂𝑓 (𝑖)𝑥 ≥ 𝑓𝑥

Absolute and Relative Error

▶ Absolute error: ̂𝑓𝑥 − 𝑓𝑥
▶ This will grow as collection size 𝑛 → ∞.

▶ Relative error: (̂𝑓𝑥 − 𝑓𝑥)/𝑓𝑥
▶ We’re more interested in this. Want it to be small.
▶ If 𝑓𝑥 = Θ(𝑛), we want:

(̂𝑓𝑥 − 𝑓𝑥)/𝑛 < 𝜀 ⟹ ̂𝑓𝑥 − 𝑓𝑥 < 𝜀𝑛

Analysis

▶ We’ll first look at the expected value of the
estimate in a single row.

▶ Then, we’ll compute the probability that the
aggregate estimate is much larger than the true
value.

Expected Value

▶ Fix an object, 𝑥, and a row 𝑖.

𝔼[̂𝑓 (𝑖)𝑥] = expected count in 𝑥’s bin

= 𝑓𝑥 + 𝔼[tot. frequency of colliding items 𝑦 ≠ 𝑥]

= 𝑓𝑥 +∑
𝑦≠𝑥

𝑓𝑦 ⋅ ℙ(hash(y) == hash(x))

= 𝑓𝑥 +
1
𝑐 ∑𝑦≠𝑥

𝑓𝑦 ≤ 𝑓𝑥 +
𝑛
𝑐

Expected Value

▶ We found: 𝔼[̂𝑓 (𝑖)𝑥] ≤ 𝑓𝑥 + 𝑛
𝑐 .

▶ Is this good or bad?
▶ Suppose 𝑓𝑥 = 𝑝𝑥𝑛, where 𝑝𝑥 ∈ [0, 1].

▶ Absolute error is Θ(𝑛).

▶ But relative error is 1
𝑝𝑐 .

▶ Independent of 𝑛!

Extreme Values
▶ Goal: show unlikely for ̂𝑓 (𝑖)𝑥 to be much larger than 𝑓𝑥

▶ How large do we need to make 𝛼 so that
ℙ(̂𝑓 (𝑖)𝑥 − 𝑓𝑥 > 𝛼) < 1/2?

▶ From Markov’s inequality:

𝔼[̂𝑓 (𝑖)𝑥] ≥ 𝑓𝑥 + 𝛼 ⋅ 𝑃(̂𝑓 (𝑖)𝑥 − 𝑓𝑥 > 𝛼)
= 𝑓𝑥 + 𝛼/2

▶ We know 𝔼[̂𝑓 (𝑖)𝑥] ≤ 𝑓𝑥 + 𝑛
𝑐 , so 𝛼 < 2𝑛/𝑐.

Extreme Values

▶ We’ve shown that ℙ(̂𝑓 (𝑖)𝑥 − 𝑓𝑥 > 2𝑛/𝑐) < 1/2.

▶ This is just for the 𝑖th row.

▶ Minimum is > 2𝑛/𝑐 only if every row is > 2𝑛/𝑐.

▶ Probability of this happening:
𝑘

∏
𝑖=1

ℙ(̂𝑓 (𝑖)𝑥 − 𝑓𝑥 > 2𝑛/𝑐) ≤ (
1
2)

𝑘

Extreme Values
▶ Let ̂𝑓𝑥 be the aggregate estimate. We have shown:

ℙ(̂𝑓𝑥 − 𝑓𝑥 > 2𝑛/𝑐) < (
1
2)

𝑘

▶ Want ̂𝑓𝑥 − 𝑓𝑥 < 𝜀. Set 𝑐 = 2/𝜀.

▶ To ensure that an over-estimate larger than 𝜀
occurs with probability 𝛿, set

(12)
𝑘
= 𝛿 ⟹ 𝑘 = log2

1
𝛿

Designing a Count-Min Sketch

▶ Pick your 𝜀 and 𝛿: “I want overestimates to be
smaller than 𝜀𝑛 at least 1 −𝛿 percent of the time.”

▶ Set number of buckets to 𝑐 = 2/𝜀

▶ Set number of rows/hash functions to
𝑘 = log2 1/𝛿.

Example

▶ We have 1 billion tweets, want to count number
of occurrences for each.

▶ Assume each tweet requires 800 bits.

▶ dict: around 100 gigabytes, assuming ≈ 1 billion
unique

Example

▶ Instead, use a count-min sketch. Say, 𝜀 = .001
and 𝛿 = .01.
▶ “I want overestimates to be smaller than .1% of the
total number of tweets at least 99% of the time.”

▶ 𝑐 = 2/𝜀 = 2000

▶ 𝑘 = log2 1/𝛿 ≈ 7.

▶ Memory: 7 × 2000 × 64 bits = 112 kilobytes

Example

▶ Now supposed you have 42 quadrillion tweets.
▶ “I want overestimates to be smaller than .1% of the
total number of tweets at least 99% of the time.”

▶ dict: 4.2 exabytes

▶ count-min sketch: ?

Example

▶ Now supposed you have 42 quadrillion tweets.
▶ “I want overestimates to be smaller than .1% of the
total number of tweets at least 99% of the time.”

▶ dict: 4.2 exabytes

▶ count-min sketch: 112 kilobytes

How?

▶ The relative error 𝜀 of a count-min sketch does
not depend on 𝑛!

▶ The 𝑛 is “hidden” inside the relative error:

̂𝑓𝑥 − 𝑓𝑥 < 𝜀𝑛

Count-Min Sketch and Bloom Filters

▶ The Count-Min Sketch and Bloom Filters are both
probabilistic data structures.

▶ Both make use of multiple hashing.

▶ Why does CMS take much less memory?

Less Memory

▶ Why does a CMS use less memory than a Bloom
filter?

▶ The problem it is solving is easier.

▶ Bloom filter: big difference between seeing an
element once and never seeing it.

▶ Count-Min sketch: essentially no difference.

Lecture 18 | Part 3

The End

