
Lecture 18 | Part 1

The Count-Min Sketch

Lecture 18 | Part 1

The Count-Min Sketch

Last Time: Membership Queries▶ You’ve collected 1 billion tweets.1▶ Goal: given the text of a new tweet, is it already
in the data set?▶ Data set is too large to fit into memory.▶ Our solution: Bloom filters.

1This is about two days of activity.

Today: Frequencies▶ You’ve collected 1 billion tweets.▶ Goal: given the text of a tweet, how many times
have we seen it?▶ Data set is too large to fit into memory.▶ Today’s solution: the Count-Min Sketch.

Frequency Counts▶ Given: a collection 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}.▶ Support:▶ .count(x): Number of times x appears.▶ .increment(x): Increment count of x

Simple Solution▶ Use hash tables: dictionary of counts.

class SetCounts:

def __init__(self):
self.counts = {}

def increment(self, x):
if x not in self.counts:

self.counts[x] = 1
else:

self.counts[x] += 1

def count(self, x):
try:

return self.counts[x]
except KeyError:

return 0

Problem: Memory Usage▶ Requires storing the keys.▶ Example: store approximately 1 billion tweets
(100 GB).▶ Can’t fit the dictionary in memory.

A Fix▶ Why do we store all of the keys?▶ To resolve collisions.▶ What if we ignore collisions?

Hashing Into Counters
0 1 2 3 4 5 6 7 8 9

s hash(s)

”surf” 3
”sand” 8
”data” 5
”sun” 1
”beach” 5

”data”
”surf”
”sand”
”surf”
”surf”
”beach”
”data”
”beach”
”surf”
”sun”

▶ Use a size 𝑐 (𝑐 ≪ 𝑛) array
of integers (counts).▶ .increment(x):
arr[hash(x)] += 1▶ .count(x):
return arr[hash(x)]

▶ Can be wrong!

Hashing Into Counters
0 1 2 3 4 5 6 7 8 9

s hash(s)

”surf” 3
”sand” 8
”data” 5
”sun” 1
”beach” 5

”data”
”surf”
”sand”
”surf”
”surf”
”beach”
”data”
”beach”
”surf”
”sun”

▶ Use a size 𝑐 (𝑐 ≪ 𝑛) array
of integers (counts).▶ .increment(x):
arr[hash(x)] += 1▶ .count(x):
return arr[hash(x)]▶ Can be wrong!

Biased Estimate▶ The count returned from this approach is biased
high.▶ Can we do better?▶ Idea: multiple hashing. Perform previous 𝑘
times.▶ This is the count-min sketch.

Count-Min Sketch
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

s hash_1(s) hash_2(s)

”surf” 3 7
”sand” 8 7
”data” 5 4
”sun” 1 9
”beach” 5 6

”data”
”surf”
”sand”
”surf”
”surf”
”beach”
”data”
”beach”
”surf”
”sun”

▶ Use 𝑘 arrays of counts,
each with own
independent hash
functions.▶ .increment(x): Set
arr_1[hash_1(x)] += 1,
arr_2[hash_2(x)] += 1,
…,
arr_k[hash_k(x)] += 1.

Count-Min Sketch
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

s hash_1(s) hash_2(s)

”surf” 3 7
”sand” 8 7
”data” 5 4
”sun” 1 9
”beach” 5 6

”data”
”surf”
”sand”
”surf”
”surf”
”beach”
”data”
”beach”
”surf”
”sun”

▶ Use 𝑘 arrays of counts,
each with own
independent hash
functions.▶ .count(x): Return the
minimum of
arr_1[hash_1(x)],
arr_2[hash_2(x)], …,
arr_k[hash_k(x)].

Returning the Minimum Count▶ The count is still biased high.▶ But by returning the minimum, bias is reduced.

Memory Usage▶ Each counter cell stores an integer (64 bits).▶ Total size: 64 × 𝑐 ⋅ 𝑘 bits▶ 𝑐 and 𝑘 should be chosen to match prescribed
level of error.

Lecture 18 | Part 2

Designing a Count-Min Sketch

Error Rate▶ Count-min sketch is a probabilistic data
structure.▶ Returns the wrong answer sometimes.▶ How wrong is it, probably?▶ And how does this depend on 𝑐 and 𝑘?

Notation▶ We see 𝑛 items, record frequencies in count-min
sketch.▶ For any item 𝑥, let 𝑓𝑥 be its true frequency.▶ ̂𝑓 (𝑖)𝑥 ≡ arr_i[hash_i(x)] is estimated frequency
of 𝑥 according to row 𝑖. ̂𝑓𝑥 is aggregate estimate:̂𝑓𝑥 = min𝑖 ̂𝑓 (𝑖)𝑥 .▶ Note: ̂𝑓 (𝑖)𝑥 ≥ 𝑓𝑥 Wi, Ex

Absolute and Relative Error▶ Absolute error: ̂𝑓𝑥 − 𝑓𝑥▶ This will grow as collection size 𝑛 → ∞.▶ Relative error: (̂𝑓𝑥 − 𝑓𝑥)/𝑓𝑥▶ We’re more interested in this. Want it to be small.▶ If 𝑓𝑥 = Θ(𝑛), we want:(̂𝑓𝑥 − 𝑓𝑥)/𝑛 < 𝜀 ⟹ ̂𝑓𝑥 − 𝑓𝑥 < 𝜀𝑛

Analysis▶ We’ll first look at the expected value of the
estimate in a single row.▶ Then, we’ll compute the probability that the
aggregate estimate is much larger than the true
value.

Expected Value▶ Fix an object, 𝑥, and a row 𝑖.𝔼[̂𝑓 (𝑖)𝑥] = expected count in 𝑥’s bin= 𝑓𝑥 + 𝔼[tot. frequency of colliding items 𝑦 ≠ 𝑥]= 𝑓𝑥 +∑𝑦≠𝑥 𝑓𝑦 ⋅ ℙ(hash(y) == hash(x))
= 𝑓𝑥 + 1𝑐 ∑𝑦≠𝑥 𝑓𝑦 ≤ 𝑓𝑥 + 𝑛𝑐

Expected Value▶ We found: 𝔼[̂𝑓 (𝑖)𝑥] ≤ 𝑓𝑥 + 𝑛𝑐 .▶ Is this good or bad?▶ Suppose 𝑓𝑥 = 𝑝𝑥𝑛, where 𝑝𝑥 ∈ [0, 1].▶ Absolute error is Θ(𝑛).▶ But relative error is 1𝑝𝑐 .▶ Independent of 𝑛!

Extreme Values▶ Goal: show unlikely for ̂𝑓 (𝑖)𝑥 to be much larger than 𝑓𝑥▶ How large do we need to make 𝛼 so thatℙ(̂𝑓 (𝑖)𝑥 − 𝑓𝑥 > 𝛼) < 1/2?▶ From Markov’s inequality:𝔼[̂𝑓 (𝑖)𝑥] ≥ 𝑓𝑥 + 𝛼 ⋅ 𝑃(̂𝑓 (𝑖)𝑥 − 𝑓𝑥 > 𝛼)= 𝑓𝑥 + 𝛼/2▶ We know 𝔼[̂𝑓 (𝑖)𝑥] ≤ 𝑓𝑥 + 𝑛𝑐 , so 𝛼 < 2𝑛/𝑐.

Extreme Values▶ We’ve shown that ℙ(̂𝑓 (𝑖)𝑥 − 𝑓𝑥 > 2𝑛/𝑐) < 1/2.▶ This is just for the 𝑖th row.▶ Minimum is > 2𝑛/𝑐 only if every row is > 2𝑛/𝑐.▶ Probability of this happening:𝑘∏𝑖=1 ℙ(̂𝑓 (𝑖)𝑥 − 𝑓𝑥 > 2𝑛/𝑐) ≤ (12)𝑘

Extreme Values▶ Let ̂𝑓𝑥 be the aggregate estimate. We have shown:ℙ(̂𝑓𝑥 − 𝑓𝑥 > 2𝑛/𝑐) < (12)𝑘▶ Want ̂𝑓𝑥 − 𝑓𝑥 < 𝜀. Set 𝑐 = 2/𝜀.▶ To ensure that an over-estimate larger than 𝜀
occurs with probability 𝛿, set(12)𝑘 = 𝛿 ⟹ 𝑘 = log2 1𝛿

Designing a Count-Min Sketch▶ Pick your 𝜀 and 𝛿: “I want overestimates to be
smaller than 𝜀𝑛 at least 1 −𝛿 percent of the time.”▶ Set number of buckets to 𝑐 = 2/𝜀▶ Set number of rows/hash functions to𝑘 = log2 1/𝛿.

Example▶ We have 1 billion tweets, want to count number
of occurrences for each.▶ Assume each tweet requires 800 bits.▶ dict: around 100 gigabytes, assuming ≈ 1 billion
unique

Example▶ Instead, use a count-min sketch. Say, 𝜀 = .001
and 𝛿 = .01.▶ “I want overestimates to be smaller than .1% of the

total number of tweets at least 99% of the time.”▶ 𝑐 = 2/𝜀 = 2000▶ 𝑘 = log2 1/𝛿 ≈ 7.▶ Memory: 7 × 2000 × 64 bits = 112 kilobytes

Example▶ Now supposed you have 42 quadrillion tweets.▶ “I want overestimates to be smaller than .1% of the
total number of tweets at least 99% of the time.”▶ dict: 4.2 exabytes▶ count-min sketch: ?

Example▶ Now supposed you have 42 quadrillion tweets.▶ “I want overestimates to be smaller than .1% of the
total number of tweets at least 99% of the time.”▶ dict: 4.2 exabytes▶ count-min sketch: 112 kilobytes

How?▶ The relative error 𝜀 of a count-min sketch does
not depend on 𝑛!▶ The 𝑛 is “hidden” inside the relative error:̂𝑓𝑥 − 𝑓𝑥 < 𝜀𝑛

Count-Min Sketch and Bloom Filters▶ The Count-Min Sketch and Bloom Filters are both
probabilistic data structures.▶ Both make use of multiple hashing.▶ Why does CMS take much less memory?

Less Memory▶ Why does a CMS use less memory than a Bloom
filter?▶ The problem it is solving is easier.▶ Bloom filter: big difference between seeing an
element once and never seeing it.▶ Count-Min sketch: essentially no difference.

Lecture 18 | Part 3

The End

