DPSC /70

DATA STRUCTURES § ALLORITHMS

Lecture 15 Part1

Today'’s Lecture

String Data Structures
One of the themes of this quarter:
If you're doing something once, use an algorithm.

If you're doing it over and over, use an
appropriate data structure.

String Data Structures

Over the next two lectures, we'll look at data
structures for strings.

Today: tries for efficient repeated prefix queries.

Autocompletion

Google

data sc

-

data sc-Google Search
data science

data scientist

data scientist salary

data scientist salary san diego
data scientist salary california
data science ucsd

data science jobs

data science salary

L L P L L L L L P P P

data science major

DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 15 Part 2

Tries

Trie
A data structure for storing strings.
Pronounced “try”, short for “retrieval”.

Supports fast prefix query and membership
query.

Prefixes

A prefix p of a string s is a contiguous slice of the
form s[oe:t], for some t.

Examples:
"test” is a prefix of "testing”
"te"” is a prefix of "testing”
"sa” is a prefix of "san diego”
"di” is not a prefix of "san diego”

Prefix Query
Given: a collection of n strings and a prefix, p.

Find: all strings in the collection for which pis a
prefix.

Examp =
I’ "bid”' "Car"
7 — "ba

Brute Force

Loop over each of n strings, compare against
prefix p.

Worst-case time: ©(n - |p|)

Trie: Motivation

"bar"’ "bad"’ "bid"’ Hcar"

all words

b d

"bar"’ "bad"’ "bid" "CaI'"

Trie: Motivation

"bar"’ "bad"’ "bid"’ Hcar"

all words

Trie: Motivation

"bar"’ "bad"’ "bid"’ Hcar"

all words

”bar" "bad"

Tries

Internal nodes represent
prefixes.

Leaf nodes represent full words.
Edges are characters.

Words are encoded as paths.

Sentinels

$ is a sentinel.

It is different from the dollar sign
character.

It marks the end of a word.

Used to show that "bar” in trie,
but "ba” not.

DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 15 Part 3

Implementing Tries

.-'§" Representation

Each node has a hash table / array mapping
characters to a child nodes.

Sentinel represented with a singleton object?

END_OF_STRING = object()
class TrieNode:

def __init__(self):
self.children = {}

Insertion

b c and nodes as necessary.

}/14)\ “Walk” down tree, creating edges

When no more letters left, add

. e
ﬂ a 1 a sentinel.
o ?\ .
r \p Example: insert
q k "Cab"’ "Cal"d"’ "ZOO"
d
é \

°N

& —8n

N\
&\OO

Insertion (Recursive)

Suppose we .insert(s) on root
node.

If sfe] notin self.children,
create a new node.

Otherwise, let child be
self.children[s[o]].

Recursively insert s[1:] into
child.

def insert(self, s, start=o, stop=None):
"""Insert s[start:stop] into the trie.
if stop is None:
stop = len(s)

nnn

if start >= stop:
self.children[END_OF _STRING] = TrieNode()
return

if s[start] not in self.children:
self.children[s[start]] = TrieNode()

child = self.children[s[start]]
child.insert(s, start + 1, stop)

Insertion Time Complexity
O(|w|) time, where w is the string inserted.

No matter how many elements in trie!

Walk

Useful operation.

Given a prefix, “walk” down tree.
If we “fall off”, raise error.
Otherwise, return last node seen.

Examples: "ba”, "bo”

def walk(self, s, start=o, stop=None):
"""Walk the trie following s[start:stop].
Raises ValueError if falls off tree.
Returns last node encountered otherwise.”””
if stop is None:
stop = len(s)

if start >= stop:
return self

if s[start] not in self.children:
raise ValueError('Fell off tree.')
else:
child = self.children[s[start]]
return child.walk(s, start + 1, stop)

Walk Time Complexity

Worst-case O(|p|) time, where p is the prefix
searched.

No matter how many elements in trie!

Membership Query

Given p, return True/False if p in
collection.

“Walk” down tree.
If we “fall off”, return False.

If not, check that sentinel in
children.

Examples: "ba”, "bad”

def membership_query(self, s, start=o, stop=None):
"""Determine if s[start:stop] is in trie.”””
try:
node = self.walk(s, start, stop)
except ValueError:
return False

return END_OF _STRING in node.children

Membership Query Time Complexity

Worst-case O(|w]) time, where w is the prefix
searched.

No matter how many elements in trie!

Produce

Goal: generate all words in
subtrie.

Perform a DFS, keeping track of
letters along path.

If we find a sentinel, print path.

def produce(self, pathchars='"'):
"""Generate the words in the trie.
for letter, child in self.children.items():
if letter is END_OF_STRING:
yield pathchars
else:
yield from child.produce(pathchars + letter)

dlfc &VM y\\,(mjzu/b() /FDY x i W—“\AM'L(,A():
Pent
wk

aia

}l\&(pdx

Produce Time Complexity

Worst-case O(f) time, where ? is total length of
all strings stored in the trie.

If length strings is considered a constant, this is
O(n).

Prefix Query (Complete)

b c Given p, return all completions.

/C< \Q “Walk” down tree.

(> If we “fall off”, return empty list..

d b (db (b qurécz:ie?roduce all nodes in
N $ $ $
© O O

Examples: "ba”, "bad”

def complete(self, prefix):
try:
node = self.walk(prefix)
except ValueError:
return []
return list(node.produce())

y |
Jo (g ve o o7 mt)

Prefix Query Time Complexity

Worst-case O(|p| +?,) time, where p is the prefix
searched and ¢, is the total length of all matches.

If length is considered constant, this is O(|p]| + z),
where z is number of matches.

DSC /70

DATA STRUCTURES § ALLORITHMS

Lecture 15 | Part 4

Demo

