DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 12 | Part 1

Today's Lecture

Dynamic Programming

- We've seen that dynamic programming can lead to fast algorithms that find the optimal answer.
- ► Today, we'll see one data science application: longest common substring.
- Used to match DNA sequences, fuzzy string comparison, etc.

The Strategy

- 1. Backtracking solution.
- 2. A "nice" backtracking solution with overlapping subproblems.
- 3. Memoization.

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 12 | Part 2

Longest Common Subsequence

Fuzzy String Matching

- Suppose you're doing a sentiment analysis of tweets.
- How do people feel about the University of California?

- Search for: university of california
- ▶ People can't spell: uivesity of califrbia
- ► How do we recognize the match?

DNA String Matching

- Suppose you're analyzing a genome.
- DNA is a sequence of G,A,T,C.
- Mutations cause same gene to have slight differences.
- Person 1: GATTACAGATTACA

► Person 2: GATCACAGTTGCA

```
lectures/12-dp-lcs/code on property main [!?] via ≥ v3.10.12 via ※
> git cmmti
git: 'cmmti' is not a git command. See 'git --help'.
```

The most similar command is

commit

Measuring Differences

- Given two strings of (possibly) different lengths.
- Measure how similar they are.
- One approach: longest common subsequences.

Common Subsequences

```
 \overset{\circ}{u} \overset{\circ}{n} \overset{\circ}{i} \overset{\circ}{v} \overset{\circ}{e} \overset{\circ}{r} \overset{\circ}{s} \overset{\circ}{i} \overset{\circ}{t} \overset{\circ}{y} \overset{\circ}{o} \overset{\circ}{f} \overset{\circ}{c} \overset{\circ}{a} \overset{\circ}{l} \overset{\circ}{i} \overset{\circ}{f} \overset{\circ}{o} \overset{\circ}{r} \overset{\circ}{n} \overset{\circ}{i} \overset{\circ}{a}
```

Common Subsequences

```
u i v e s i t y o f c a l i f r b i a
```

Longest Common Subsequences

- We will measure similarity by finding length of the longest common subsequence (LCS).
- Now: let's define the LCS..

Subsequences

Not Subsequences

```
s a n d i e g o

s a n d i e g o

s a n d i e g o

s a n d i e g o

o 1 2 3 4 5 6 7

s a n d i e g o

o 1 1 1 7
```

Subsequences

A subsequence of a string s of length n is determined by a strictly monotonically increasing sequence of indices with values in $\{0, 1, ..., n-1\}$.

Common Subsequences

Given two strings, a common subsequence is subsequence that appears in both.

Common Subsequences

Given two strings, a common subsequence is subsequence that appears in both.

Not Common Subsequences

► The lines cannot overlap.

Saneo

Longest Common Subsequences

A longest common subsequence (LCS) between two strings is a common subsequence that has the greatest length out of all common subsequences.

Main Idea

The longer the LCS, the "more similar" the two strings.

Common Subsequences, Formally

- Our backtracking solution will build a common subsequence piece by piece.
- How can we represent the idea of "lines between letters" more formally?

Matching

Matching

- A matching between strings a and b is a set of (i,j) pairs.
- Each (i,j) pair is interpreted as "a[i] is paired with b[j]".
- Example: {(1,0), (2,1), (3,2), (4,5)}

Invalid Matchings

Not all matchings represent common subsequences!

Example: {(0, 1), (3, 2), (4, 4)}:

Invalid Matchings

Not all matchings represent common subsequences!

Example: {(4,0), (2, 1), (3, 2)}:

Valid Matchings

- We'll say a matching M is valid if:
 - ▶ a[i] == b[j] for every pair (i,j); and
 - there are no "crossed lines"

- Suppose (i,j) and (i',j') are in the matching.
- "Crossed lines" occur when either:
 - \triangleright i < i' but j ≥ j'; or
 - ▶ i > i' but $j \le j'$.

Valid Matchings

- We'll say a matching M is valid if:
 - \triangleright a[i] == b[j] for every pair (i, j); and
 - there are no "crossed lines". that is, for every choice of distinct pairs $(i,j),(i',j') \in M$:

$$i < i'$$
 and $j < j'$ or $i > i'$ and $j > j'$

Example: {(1,0), (2, 1), (3, 2), (4, 5)}

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 12 | Part 3

Step 01: Backtracking

Road to Dynamic Programming

We'll follow same road to a DP solution as last time.

Step 01: Backtracking solution.

- Step 02: A "nice" backtracking solution with overlapping subproblems.
- Step 03: Memoization.

Backtracking

- We'll build up a matching, one pair at a time.
- Choose an arbitrary pair, (i, j).
 - Recursively see what happens if we do include (i, j).
 - Recursively see what happens if we don't include (i, j).
- ► This will try **all valid matchings**, keep the best.

Backtracking

```
(0,0),(0,1),(0,2)\cdots
def lcs_bt(a, b, pairs):
    """Solve find best matching using the pairs in `pairs`."""
   pair = pairs.arbitrary pair()
    if pair is None:
       return o
   i, j = pair
   # best with
   best with = ...
   # best without
    best without = ...
    return max(best with, best without)
```

```
hello
1 (0,2)
helo
```

Recursive Subproblems

What is BEST(a, b, pairs) if we assume that (i, j) is in matching?

- ▶ Ifa[i] != **b**[j]:
 - Your current common substring is invalid. Length is zero.
 - Don't build matching further.
- ▶ Ifa[i] == **b**[j]:
 - Your current common substring has length one.
 - Pairs remaining to choose from: those **compatible** with (*i*, *j*).
 - You find yourself in a similar situation as before.
 - Answer: 1 + BEST(activities.compatible_with(x)))

pairs.compatible with(x)

Backtracking

```
def lcs_bt(a, b, pairs):
    """Solve find best matching using the pairs in `pairs`."""
    pair = pairs.arbitrarv pair()
    if pair is None:
        return o
    i.j = pair
    # best with
    if a[i] == b[i]:
        best_with = 1 + lcs_bt(a, b, pairs.compatible with(i. i))
    else:
        best with = 0
    # best without
    best without = ...
    return max(best with, best without)
```

Recursive Subproblems

- What is BEST(a, b, pairs) if we assume that (i, j) is not in matching?
- Imagine not choosing x.
 - Your current common substring is empty.
 - Activities left to choose from: all except (i, j).
- ► You find yourself in a similar situation as before.
- Answer: BEST(a, b, pairs.without(i, j)))

pairs.without(x)

Backtracking

```
def lcs bt(a, b, pairs):
    """Solve find best matching using the pairs in `pairs`."""
    pair = pairs.arbitrary pair()
    if pair is None:
        return o
    i. j = pair
    # hest with
    # assume (i, j) is in the LCS, but only if a[i] == b[i]
    if a[i] != b[j]:
        best with = 0
    else:
        best with = 1 + lcs bt(a, b, pairs.compatible with(i, j))
    # hest without
    best without = lcs bt(a, b, pairs.without(i, j))
    return max(best with, best without)
```

Backtracking

- This will try all valid matchings.
- Guaranteed to find optimal answer.
- But takes exponential time in worst case.

Lecture 12 | Part 4

Step 02: A "Nicer" Backtracking Solution

Arbitrary Sets

- In previous backtracking solution, subproblems are arbitrary sets of pairs.
- Rarely see the same subproblem twice.
- This is not good for memoization!

- (0,0) (0,1) (0,2) (1,0) (1,1) (1,2)
 - (1,1) (1,2) (1,3) (1,4)

(0.3)

- (1,1) (1,2) (1,3) (1,1)
 - (2,1) (2,2) (2,3) (2,4)
 - (3,1) (3,2) (3,3) (3,4)

Nicer Subproblems

- In backtracking, we are building a solution piece-by-piece.
- In last lecture, we saw that a careful choice of next piece led to nice subproblems.
- Let's try choosing the *last* remaining letters from each string as the next piece of the matching.

Last Letters

(0,0)	(0,
(1,0)	(1,1

Nicer Backtracking

```
def lcs_bt_nice(a, b, pairs):
    """Solve find best matching using the pairs in `pairs`."""
    pair = pairs.last pair()
    if pair is None:
        return o
    i.j = pair
    # best with
    if a[i] != b[i]:
        best with = 0
    else:
        best with = 1 + lcs_bt_nice(a, b, pairs.compatible_with(i, j))
    # best without
    best without = lcs bt nice(a, b, pairs.without(i, j))
    return max(best with, best without)
```

Subproblems

There are two subproblems: LCS using pairs.compatible_with(i, j) and LCS using pairs.without(i, j)

Are they "nicer"?

pairs.compatible_with(i, j)

	(0,0) (0,1) (0,2) (0,3) (0,4) (0 <mark>,5</mark>)
G A T T A	(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)
	(2,0) (2,1) (2,2) (2,3) (2,4) (2 ,5)
ATTCGA	(3,0) (3,1) (3,2) (3,3) (3,4) (3 ,5)
	(4,0) (4,1) (4,2) (4,3) (4,4) (4 <mark>,5</mark>)

Nicer Subproblems

Instead of keeping set of pairs, just need to pass in i and j of last element.

```
def lcs_bt_nice_2(a, b, i, j):
    """Solve LCS problem for a[:i], b[:j]."""
    if i < 0 or j < 0:
        return 0

# best with
    if a[i] != b[j]:
        best_with = 0
    else:
        best with = 1 + lcs bt nice 2(a, b, i-1, j-1)</pre>
```

return max(best with, best without)

best without
best without = ...

pairs.without(i, j)

Problem

- pairs.without(i, j) is not rectangular.
- Cannot be described by a single pair.
- But there's a fix.

Observation

A common substring cannot have pairs both in the last row and the last column. Crossing lines!

	(0,0)	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)
G A T T A	(1,0)	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)
	(2,0)	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)
A T T C G A	(3,0)	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)
	(4,0)	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)

Consequence

BEST(pairs.without(i, j)) = max
{BEST(pairs.without_row(i)),
BEST(pairs.without_col(j))}

					1	
	(0,0)	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)
G A T T A	(1,0)	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)
					(2,4)	
ATTCGA	(3,0)					
	(4,0)	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)

Observation

```
▶ pairs.without_row(i) represented by subprob (i-1,j)
```

pairs.without_col(j) represented by subprob. (i, j-1)

(0,5)

(1,5)

(2,5)

(3,5)

	Ρ.					 		, . op			ър. с	1.17
							_	(0,0)	(0,1)	(0,2)	(0,3)	(0,4
o G	1 A	<u>2</u> Т	3 	4 A				(0,0) (1,0) (2,0) (3,0) (4,0)	(1,1)	(1,2)	(1,3)	(1,4)
								(2,0)	(2,1)	(2,2)	(2,3)	(2,4)
A	T 1	T	C 3	G	A 5			(3,0)	(3,1)	(3,2)	(3,3)	(3,4)
								(4,0)	(4,1)	(4,2)	(4,3)	(4,4)

"Nice" Backtracking

```
def lcs bt nice 2(a, b, i, j):
    """Solve LCS problem for a[:i], b[:il."""
    if i < 0 or i < 0:
         return o
    # best with
    if a[i] != b[j]:
         best with = 0
    else:
         best with = 1 + lcs bt nice 2(a, b, i-1, j-1)
    # best without
    best without = max(
             lcs_bt_nice_2(a, b, i-1, j),
lcs_bt_nice_2(a, b, i, j-1)
    return max(best with, best without)
```

One More Observation

- This is fine, but we can do a little better.
- ▶ If a[i] == b[j], we can assume (i,j) is in matching – don't need to consider otherwise!¹

¹This is true if we chose last pair; not true if choice was arbitrary.

"Nicer" Backtracking

```
def lcs_bt_nice_2(a, b, i, j):
    """Solve LCS problem for a[:i], b[:j]."""
     if i < 0 or i < 0:
          return o
     # best with
     if a[i] == b[j]:
          # best with (i. i)
          return 1 + lcs bt nice 2(a, b, i-1, j-1)
     else:
          # best without (i. i)
          return max(
                    lcs_bt_nice_2(a, b, i-1, j),
lcs_bt_nice_2(a, b, i, j-1)
```

Overlapping Subproblems

- ▶ Suppose *a* and *b* are of length *m* and *n*.
- ► There are *mn* possible subproblems.
- Backtracking tree has exponentially-many nodes.
- We will see many subproblems over and over again!

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 12 | Part 5

Step 03: Memoization

Backtracking

► The backtracking solutions are slow.

a = 'CATCATCATCATCATGAAAAAAA'

▶ b = 'GATTACAGATTACAGATTACA'

"Nice" backtracking solution: 8 seconds.

Backtracking

► The backtracking solutions are slow.

▶ a = 'CATCATCATCATGAAAAAAA'

▶ b = 'GATTACAGATTACA'

- "Nice" backtracking solution: 8 seconds.
- Memoized solution: 100 microseconds.

```
def lcs_dp(a, b, i=None, j=None, cache=None):
    """Solve LCS problem for a[:i], b[:j]."""
    if i is None:
         i = len(a) - 1
    if j is None:
         i = len(b) - 1
    if cache is None:
         cache = {}
    if i < 0 or j < 0:
         return o
    if (i,j) in cache:
         return cache[(i, j)]
    # hest with
    if a[i] == b[j]:
         # best with (i. i)
         best = 1 + lcs'dp(a, b, i-1, j-1, cache)
    else:
         # best without (i. i)
         best = max(
                  lcs_dp(a, b, i-1, j, cache),
                  lcs_{dp}(a, b, i, j-1, cache)
    cache[(i, j)] = best
    return best
```

Top-Down vs. Bottom-Up

► This is the **top-down** dynamic programming solution.

It takes time Θ(mn), where m and n are the string lengths.

- To find a bottom-up iterative solution, start with the easiest subproblem.
- ► What is it?

Bottom-Up Solution

```
(0,0)
                                                                 (0.1)
                                                                          (0.2)
# best with
if a[i] == b[j]:
                                                         (1,0) (1,1) (1,2)
    # best with (i, j)
    best = 1 + lcs_dp(a, b, i-1, j-1, cache)
else:
    # best without (i. i)
                                                        (2.0)
                                                                 (2,1)
                                                                          (2,2)
    best = max(
            lcs_dp(a, b, i-1, j, cache), lcs_dp(a, b, i, j-1, cache)
                                                        (3.0)
                                                                 (3.1)
                                                                          (3.2)
```

```
def lcs dp bup(a, b):
    """Compute length of LCS, but bottom-up."""
    # initialize cache
    cache = {}
    for i in range(-1, len(a)):
    cache[(i, -1)] = 0
    for j in range(-1, len(b)):
cache[(-1, j)] = 0
    # fill cache
    for i in range(len(a)):
        for j in range(len(b)):
             if a[i] == b[i]:
                 # best with (i. i)
                 best = 1 + cache[(i-1, i-1)] # was 1 + lcs dp(a, b, i-1, i-1, cache)
             else:
                 # best without (i. i)
                 best = max(
                          cache[(i-1, j)], # was lcs dp(a, b, i-1, j, cache)
                          cache[(i, i-1)] # was lcs dp(a, b, i, i-1, cache)
             cache[(i, j)] = best
    return cache[(len(a)-1, len(b)-1)]
```

Recoving the Solution

- lcs_dp returns the length of the LCS.
- ► How do we recover the actual LCS as a string?
- This information is (implicitly) stored in the cache!

Recovering the Solution

(2,1)

```
a = "ace"
b = "abcde"
```

	-1	0	1	2	3	4
-1	Q	0	0	0	0	0
0	0	1	1	1	1	1
1	0	1	1	1	2	2
2	0	1	1	2	2	3

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 12 | Part 6

String Matching in Practice

In Practice

- ► The **longest common subsequence** is only one way of measuring similarity between strings.
- In fact, LCS is one specific example of an **edit distance**.

Edit Distance

- An edit distance is a measure of similarity between two strings.
- It is the minimum number of **edits** required to transform one string into another.
- LCS: only **insert** and **delete** edits allowed.
- Levenshtein distance: insert, delete, and substitute edits allowed.

In Python

difflib module in the standard library.

fuzzywuzzy module on PyPI.

Next Time

Find all instances of a **needle** in a **haystack**.