DPSC /70

DATA STRUCTURES § ALLORITHMS

Lecture 12 Part1

Today'’s Lecture

Dynamic Programming

We've seen that dynamic programming can lead
to fast algorithms that find the optimal answer.

Today, we’ll see one data science application:
longest common substring.

Used to match DNA sequences, fuzzy string
comparison, etc.

The Strategy

Backtracking solution.

A “nice” backtracking solution with overlapping
subproblems.

Memoization.

DPSC /70

DATA STRUCTURES § ALLORITHMS

Lecture 12 Part 2

Longest Common Subsequence

Fuzzy String Matching

Suppose you're doing a sentiment analysis of
tweets.

How do people feel about the University of
California?

Search for: university of california
People can't spell: uivesity of califrbia

How do we recognize the match?

DNA String Matching

Suppose you're analyzing a genome.
DNA is a sequence of G,A, T, C.

Mutations cause same gene to have slight
differences.

Person 1: GATTACAGATTACA

Person 2: GATCACAGTTGCA

lectures/12-dp-lcs/code on ¥ main [!?] via & v3.10.12 via %
> git cmmti
git: 'cmmti' is not a git command. See 'git --help'.

The most similar command 1is
commit

Measuring Differences
Given two strings of (possibly) different lengths.
Measure how similar they are.

One approach: longest common subsequences.

o

w

w

Common Subsequences

~
@
o

ersity of

IS
@
o
~
o
©
3
]
@
=
o]
>
3
®
S

2 Q)

2 2 23

nia

cC o

o

< v

w

Common Subsequences

~

o

ity

13 14

califo

15 16

17 18 19

20 2 2 23

rnia

5 Q)

Longest Common Subsequences

We will measure similarity by finding length of
the longest common subsequence (LCS).

Now: let's define the LCS..

Subsequences

sandiego

iego igo
s 1 0 sio
sandiego sadego

sandiego sandiego

ow-

g
2

W
- 3

d
7

C
0~
N «

sandiego
sandiliego

Not Subsequences

Subsequences

A subsequence of a string s of length n is determined by a
strictly monotonically increasing sequence of indices with
valuesin{0,1,...,n-1}.

2 3 4

sandiego sadego

Common Subsequences

Given two strings, a common subsequence is
subsequence that appears in both.

3 4 5 6 7

Ssan

S a n

0 1 2 3 4 5 6 7 8 9

Common Subsequences

Given two strings, a common subsequence is
subsequence that appears in both.

0 1 2 3 4 5 6 7

S a e o

S a e o

0 1 2 3 4 5 6 7 8 9

Not Common Subsequences

The lines cannot overlap.
San<eo

Longest Common Subsequences

A longest common subsequence (LCS) between
two strings is a common subsequence that has
the greatest length out of all common
subsequences.

S a e o

0 1 2 3 4 5 6 7 8 9

Main Idea

The longer the LCS, the “more similar” the two
strings.

Common Subsequences, Formally

Our backtracking solution will build a common
subsequence piece by piece.

How can we represent the idea of “lines between
letters” more formally?

Matching

(0,00 (01 (0,2) (0,3)

00000

ATTA (11 (1,2 (1,3)
(2,0) (2,2) (2,3)
ATTCGA (30) G &2P (33)

000000

Matching

A matching between strings a and b is a set of (i,)
pairs.

Each (i,j) pair is interpreted as “a[i] is paired with

b[j]

Example: {(1,0),(2,1),(3,2),(4,5)}

Invalid Matchings

Not all matchings represent common
subsequences!

Example: {(0, 1), (3, 2), (4, &)}

Invalid Matchings

Not all matchings represent common
subsequences!

Example: {(4,0),(2,1),(3,2)}:

Valid Matchings

We'll say a matching M is valid if:
ali] == b[j] for every pair (i,j); and
there are no “crossed lines”

“Crossed Lines” (!, ¥
(3. 5)
Suppose (i,j) and (i’,j’) are in the matching.

“Crossed lines” occur when either: ,
i<i"butj=j,;or
i>i'butj<j /410)
(2,))

'

Valid Matchings

We'll say a matching M is valid if:
ali] == b[j] for every pair (i,j); and
there are no “crossed lines”. that is, for every choice
of distinct pairs (i,j), (i',j’) € M:

i<i"andj<j’ or i>i"andj>j’
Example: {(1,0),(2,1),(3,2),(4,5)}

0

ATTA

- 3>

DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 12 Part 3

Step 01: Backtracking

Road to Dynamic Programming

We’'ll follow same road to a DP solution as last
time.

Step 01: Backtracking solution.

Step 02: A “nice” backtracking solution with
overlapping subproblems.

Step 03: Memoization.

Backtracking
We'll build up a matching, one pair at a time.

Choose an arbitrary pair, (i, j).
Recursively see what happens if we do include
(1, J).
Recursively see what happens if we don’t include
(1, J).

This will try all valid matchings, keep the best.

Backtracking
e CCO)O)) (0,\)’(5,7,).. .

def lcs_bt(a, b, pairs):
"""Solve find best matching using the pairs in “pairs .”"”
pair = pairs.arbitrary_pair()

if pair is None:
return o

i, j = pair

best with
best_with = ..

best without
best_without = ...

return max(best_with, best _without)

Recursive Subproblems

What is BEsT(a, b, pairs) if we assume that (i, j)isin
matching?

Ifalil '= bljl:
Your current common substring is invalid. Length is zero.
Don’t build matching further.

Ifali] == W[j1: '
Your current common substring has length one.
Pairs remaining to choose from: those compatible with
(i,))-
You find yourself in a similar situation as before.
Answer: 1+ BEST(a&t—ifng're-s .compatible_with(x)))

P

pairs.compatible_with(x)

00000

000000

(0,0) (01) (0,2)
(1,00 (1) «(1,2)
(2,00 (21 «(2,2)
(30) GD (B2
(40) (41) (4,2)

(0,3)
(1,3)
(2,3)
(3,3)

(4,3)

(0,4)
(1,4)
(2,4)
(3,4)

(4,4)

Backtracking

def lcs_bt(a, b, pairs):
"""Solve find best matching using the pairs in “pairs .”"”
pair = pairs.arbitrary_pair()

if pair is None:
return o

i, j = pair

best with
if a[il] == b[j]:

best_with = 1 + lcs_bt(a, b, pairs.compatible_with(i, j))
else:

best_with = o

best without
best_without =

return max(best_with, best_without)

Recursive Subproblems

What is BEst(a, b, pairs) if we assume that (i, j) isnotin
matching?

Imagine not choosing x.
Your current common substring is empty.
Activities left to choose from: all except (i, j).

You find yourself in a similar situation as before.

Answer: BEsT(a, b, pairs.without(i, j)))

pairs.without(x)

00000

000000

(0,0)
(1,0)
(2,0)
(3,0)

(4,0)

(07)
(17
(2
(31)

(4,1)

(0,2)
(1,2)
(2,2)
(3.2)

(4,2)

(0,4)
(1,4)
(2,4)
(3,4)

(4,4)

Backtracking

def lcs_bt(a, b, pairs):

nmnn a2l

Solve find best matching using the pairs in “pairs .
pair = pairs.arbitrary_pair()

if pair is None:
return o

i, j = pair

best with
assume (i, j) is in the LCS, but only if a[i] == b[j]
if af[il !'= b[jl:
best_with = o
else:
best_with = 1 + lcs_bt(a, b, pairs.compatible_with(i, j))

best without
best_without = lcs_bt(a, b, pairs.without(i, j))

return max(best_with, best _without)

Backtracking
This will try all valid matchings.
Guaranteed to find optimal answer.

But takes exponential time in worst case.

DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 12 Part 4

Step 02: A “Nicer” Backtracking Solution

Arbitrary Sets

In previous backtracking
solution, subproblems are (0,00 (01)
arbitrary sets of pairs.

(1,00 (1)
Rarely see the same
subproblem twice. (20) (20
This is not good for (3,00 (31

memoization!

(0,2) (0,3) (0,4)
(1,2) (1,3) (1,%)
(22) (23) (2,4)

(32) (33) (34)

Nicer Subproblems

In backtracking, we are building a solution
piece-by-piece.

In last lecture, we saw that a careful choice of
next piece led to nice subproblems.

Let's try choosing the last remaining letters from
each string as the next piece of the matching.

Last Letters

(0,0)
(1,0)
(2,0)
(3,0)

(4,0)

(0,
(1)
(27)
(37

(41)

Nicer Backtracking

def lcs_bt_nice(a, b, pairs):
"""Solve find best matching using the pairs in “pairs .”"”
pair = pairs.last_pair()

if pair is None:
return o

i, j = pair

best with
if al[il !'= b[jl:
best_with = o
else:
best_with = 1 + lcs_bt_nice(a, b, pairs.compatible_with(i, j))

best without
best_without = lcs_bt_nice(a, b, pairs.without(i, j))

return max(best_with, best_without)

Subproblems

There are two subproblems: LCS using

pairs.compatible_with(i, j) and LCS using
pairs.without(i, j)

Are they “nicer”?

pairs.compatible_with(i, j)

00000

000000

(0,0)
(1,0)
(2,0)
(3,0)

(4,0)

(0,1)
(1,1)
(21)
(31)

(41)

(0,2)
(1,2)
(2,2)
(3,2)

(4,2)

(0,3)
(1,3)
(2,3)
(3,3)

(4,3)

(0,4)
(1,4)
(2,4)
(3,4)

(4,4)

Nicer Subproblems

By taking (i,j) as bottom-right pair,
pairs.compatible_with(i, j) isagain
rectangular. %, 4 (z’g)

. . . . (L%
Easily described by i1ts bottom-right pair, (043)
(i-1,j-1) ’

2 ,% (2,2
Instead of keeping set of pairs, just need to
pass in i and j of last element.

def lcs_bt_nice_2(a, b, i, j):
"n7Solve LCS problem for a[:i], b[:3].”"”
if i <o or j < o:
return o

best with
if af[il !'= b[jl:
best_with = o
else:
best_with = 1 + lcs_bt_nice_2(a, b, i-1, j-1)

best without
best_without =

return max(best_with, best _without)

pairs.without(i, j)

00000

000000

(0,0)
(1,0)
(2,0)
(3,0)

(4,0)

(0,7)
(11)
(2
(31)

(47)

(0,2)
(1,2)
(2,2)
(3,2)

(4,2)

(0,3)
(1,3)
(2,3)
(3,3)

(4,3)

(0,4)
(1,4)
(2,4)
(3,4)

(4,4)

Problem
pairs.without(i, j) is notrectangular.
Cannot be described by a single pair.

But there's a fix.

A common substring cannot have pairs both in

Observation

the last row and the last column. Crossing lines!

00000

000000

(0,0)
(1,0)
(2,0)
(3,0)

(4,0)

(01)
(1,1)
2
(€X)

(4,1)

(0,2)
(1,2)
(2,2)
(3,2)

(4,2)

(0,3)
(1,3)
(2,3)
(3,3)

(4,3)

(0,4)
(1,4)
(2,4)
(3,4)

(4,4)

(0,5)
(1,5)
(2,5)
(3,5)

(4,5)

Consequence

BesT(pairs.without(i, j))=max
{BEsT(pairs.without_row(i)),
BEsT(pairs.without_col(j))}

Observation

pairs.without_row(i) represented by subprob. (i - 1,))
pairs.without_col(j) represented by subprob.@D

[30) (01 (02 (03) (04)) (0,5)

00000

(1,00 (1) (2 13) (14) | (1,5

(2,00 210 (22) (23) 4| (2,5)

(3,00 31 (G2 (3) G4 (35

000000

(4,00 (41 (42) (43) (44)] (45)
- %

“Nice” Backtracking

def lcs_bt_nice_2(a, b, i, j):
"""Solve LCS problem for a[:i], b[:j].”"”
if i < o or j < o:
return o

best with

if a[i] !'= b[j]:
best_with = o

else:
best_with

1 + lcs_bt_nice_2(a, b, i-1, j-1)

best without

best_without = max(
lcs_bt_nice_2(a, b, i-1, j),
lcs_bt_nice_2(a, b, i, j-1)

return max(best_with, best_without)

One More Observation
This is fine, but we can do a little better.

Ifal[i] == b[j], we can assume (i,j)is in
matching - don’t need to consider otherwise!

0 1 2 3 4 5

"This is true if we chose last pair; not true if choice was arbitrary.

“Nicer” Backtracking

def lcs_bt_nice_2(a, b, i, j):
"""Solve LCS problem for a[:i], b[:j3].”"”
if i <o or j < o:
return o

best with
if ali] == b[jl:
best with (i, j)
return 1 + lcs_bt_nice_2(a, b, i-1, j-1)
else:
best without (i, j)
return max(
lcs_bt_nice_2(a, b, i-1, j),
lcs_bt_nice_2(a, b, i, j-1)

Overlapping Subproblems
Suppose a and b are of length m and n.
There are mn possible subproblems.
Backtracking tree has exponentially-many nodes.

We will see many subproblems over and over
again!

DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 12 Parth

Step 03: Memoization

Backtracking

The backtracking solutions are slow.

"CATCATCATCATCATGAAAAAAAA'

Q
|

(ox
1

"GATTACAGATTACAGATTACA'

“Nice” backtracking solution: 8 seconds.

Backtracking

The backtracking solutions are slow.

Q
|

"CATCATCATCATCATGAAAAAAAA'

(ox
1

"GATTACAGATTACAGATTACA'
“Nice” backtracking solution: 8 seconds.

Memoized solution: 100 microseconds.

def

"”"§olve'LCé problem for a[:i], b[:5].”"”
if i is None:
i = len(a) - 1

if j is None:
j = len(b) - 1

if cache is None:
cache = {}

if i <o or j< o:
return o

if (i,3j) in cache:
return cache[(i, j)I

best with
if a[i] == b[j]:
best with (i, j)
best = 1 + lcs_dp(a, b, i-1, j-1, cache)
else:
best without (i, j)
best = max(
lcs_dp(a, b , i-1, 3, cache),
lcs_dp(a, b, i, j-1, cache)

cache[(i, j)] = best
return best

Top-Down vs. Bottom-Up

This is the top-down dynamic programming
solution.

It takes time ©(mn), where m and n are the string
lengths.

To find a bottom-up iterative solution, start with
the easiest subproblem.

What is it?

- |

(2.2)
Bottom-Up Solution

(0,0) (0,1) (0,2)

fearin b
if a[i] == b[J]:
y gegfsi ?lfhlg;idgga, b, i-1, j-1, cache) (1’0) (1ﬂ) (1'2)
else:
e (200 1) (2

lcs_dp(a, b, i-1, j, cache),
%cs_dp(a, b, i, j-1, cache)

(3,00 (31 (3,2

def lcs_dp_bup(a, b):
"""Compute length of LCS, but bottom-up.”””
initialize cache
cache = {}
for i in range(-1, len(a)):
cache[(l, -1)] =
for j in range(-1, len(b))
cache[(-1, J)] = o

fill cache
for i in range(len(a))
for j in range(len(b))
if a[il == b[j]:
best with (i, j)
best = 1 + cache[(1—1, j-1)] # was 1 + lcs_dp(a, b, i-1, j-1, cache)
else:
best without (i, j)
best = max(
cache[(i-1, j)1, # was lcs_dp(a, b, i-1, j, cache)
cache[(i, j-1)]1 # was lcs_dp(a, b, i, j-1, cache)

cache[(i, j)] = best

return cache[(len(a)-1, len(b)-1)]

Recoving the Solution
lcs_dp returns the length of the LCS.
How do we recover the actual LCS as a string?

This information is (implicitly) stored in the
cache!

Recovering the Solution
(2,0

— nacen
= "abcde”
beft]with (4]
if a[i] == b[j]:
'1 0 1 2 3 4 ' a#lbest Wthh (i, j() y
best = 1 + lcs_dp(a, b, i-1, j-1, cache
1 ?: \e ¢ se# best Wit?out (i, 7)
best =
0 ¢ 1 } 1 1 L 1 e m?ﬁs_dp(a, b, i-1, j, cache),
1 D ‘| ‘| ‘| 2 2 lcs_dp(a, b, i, j-1, cache)
2 11227131

DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 12 Part 6

String Matching in Practice

In Practice

The longest common subsequence is only one
way of measuring similarity between strings.

In fact, LCS is one specific example of an edit
distance.

Edit Distance

An edit distance is a measure of similarity
between two strings.

It is the minimum number of edits required to
transform one string into another.

LCS: only insert and delete edits allowed.

Levenshtein distance: insert, delete, and
substitute edits allowed.

In Python

difflib module in the standard library.

fuzzywuzzy module on PyPI.

Next Time

Find all instances of a needle in a haystack.

