
Lecture 7 | Part 1

Approximate Nearest Neighbors

Last Time

▶ We saw kd-trees.

▶ Enable fast nearest neighbor queries.
▶ Θ(log 𝑛) time in low dimensions.

Why, exactly?

▶ Why do we need the exact NN?

▶ Often something close would do.

▶ Especially if not confident in distance measure.
▶ As is the case in high dimensions.

▶ Maybe this can be done faster?

ANN

▶ Given: A set of points and a query point, 𝑝.

▶ Return: An approximate nearest neighbor.

k-D ANNs

▶ So far, our k-d trees find exact nearest neighbor.

▶ But there’s a very simple way to do ANN query.

▶ Idea: prune more aggressively.

Before
▶ Let 𝑑nn be distance from query point to best so far.

▶ Let 𝑑bound be distance from query point to boundary.

▶ Search branch only if 𝑑bound < 𝑑nn.

Now
▶ Take 𝛼 ≥ 1 as a parameter.

▶ Search branch only if 𝑑bound < 𝑑nn/𝛼.

▶ Idea: make it easier to toss out branch.

▶ If 𝛼 = 1; exact search.

▶ If 𝛼 > 1; approximate, faster as 𝛼 grows.

Theory

▶ Let 𝑞 be exact NN, let 𝑞ann
be that found by this
strategy.

▶ Then:

𝑑(𝑝, 𝑞ann) ≤ 𝛼 ⋅ 𝑑(𝑝, 𝑞)

𝑥

𝑦

(1, 3)

(0, 2)

(0, 8)

(6, 3)

(5, 9)

(3, 10)

𝑝

Now

▶ Another approach for approximate nearest
neighbors: Locality Sensitive Hashing (LSH).

Lecture 7 | Part 2

Implementing a NN Grid

Grids

▶ Given input point 𝑝, want quick way to find
nearby points.

▶ Idea: divide space into cells using grid.

▶ Find cell containing 𝑝, search it.

▶ How would we implement this?

Grid Cells

▶ Each point (𝑥, 𝑦) given cell id: (⌊𝑥⌋, ⌊𝑦⌋)
▶ Example: (1.2, 6.7) given cell id (1, 6).

▶ Store (𝑥, 𝑦) in dictionary with cell id as key.
▶ Discretization allows multiple points in same cell.
▶ Store collisions in list.

▶ Generalizes naturally to 𝑑-dimensions.

class NNGrid:

def __init__(self, width):
self.width = width
self.cells = {}

def cell_id(self, p):
p = np.asarray(p)
cell_id = np.floor(p / self.width).astype(int)
return tuple(cell_id)

def insert(self, p):
”””Insert p into the grid.”””
cell_id = self.cell_id(p)
if cell_id not in self.cells:

self.cells[cell_id] = []
self.cells[cell_id].append(p)

...

...

def points_in_cell(self, p):
cell_id = self.cell_id(p)
if cell_id not in self.cells:

return []
points_in_cell = self.cells[cell_id]
turn into an array
return np.vstack(points_in_cell)

def query(self, p):
return brute_force_nn(self.points_in_cell(p), p)

Note

▶ This may fail – NN could be in different cell.

Problems

▶ In 𝑑 dimensions, cell id has 𝑑 entries.

cell-id(𝑝) = (⌊𝑥1/𝑤⌋, ⌊𝑥2/𝑤⌋, … , ⌊𝑥𝑑/𝑤⌋)

▶ All entries must be exactly the same for two
points to have same cell id.

▶ This is very unlikely. Most cells are empty or
contain one point.

High-Dimensional Cuboids

▶ One “fix”: increase cell width parameter.

▶ Suppose we want it to be likely that any points
within distance 𝑟 are in same cell.

▶ Then cell width should be ≈ 2𝑟.

High-Dimensional Cuboids

▶ But a 𝑑-dimensional cuboid of width 2𝑟 can
contain points at distance 2√𝑑𝑟 from one
another!

▶ For even modest 𝑟, the whole data set is in one
cell.

Main Idea

Dividing into a grid of cuboids fails in high dimen-
sions. Either the cells are empty, or contain every-
thing, depending on the width!

Lecture 7 | Part 3

A Randomized “Grid”

A Randomized “Grid”

▶ Idea: Instead of axis-aligned grid, divide into
cells using 𝑘 ≪ 𝑑 random directions.

Cell Shape

▶ Cells are no longer 𝑑-dimensional cuboids.

▶ They are random 𝑘-dimensional polytopes.

Question

▶ Why is this better? We’ll see in the next sections.

Projection
▶ How do we determine which cell a point lies in?

Cell IDs

▶ Pick 𝑘 random unit vectors, 𝑢⃗(1), … , 𝑢⃗(𝑘) ∈ ℝ𝑑.

▶ Pick a width parameter, 𝑤.

▶ Given any point 𝑝⃗, its cell id is1:

cell-id(𝑝⃗) = (⌊𝑢⃗
(1) ⋅ 𝑝⃗
𝑤 ⌋ , ⌊𝑢⃗

(2) ⋅ 𝑝⃗
𝑤 ⌋ , … , ⌊𝑢⃗

(𝑘) ⋅ 𝑝⃗
𝑤 ⌋ ,)

1use same width and unit vectors for all points

Example

Quick Cell-ID Calculation

▶ Place 𝑢⃗(1), … , 𝑢⃗(𝑘) into a matrix:

𝑈 = (

← (𝑢⃗(1))𝑇 →
← (𝑢⃗(2))𝑇 →
⋮ ⋮ ⋮
← (𝑢⃗(𝑘))𝑇 →

)

▶ Then cell-id(𝑝⃗) = entrywise-floor(𝑈𝑝⃗/𝑤)

Generating Random Unit Vectors

def gaussian_projection_matrix(k, d):
X = np.random.normal(size=(k, d))
U = X / np.linalg.norm(X, axis=1)[:,None]
return U

class NNProjectionGrid

def __init__(self, projection_matrix, width):
self.width = width
self.projection_matrix = projection_matrix
self.cells = {}

def cell_id(self, p):
projection = self.projection_matrix @ p
cell_id = np.floor(projection / self.width)
return tuple(cell_id.astype(int))

insert, query, points_in_cell same as for NNGrid

But wait...

▶ In high dimensions, still very unlikely for cell to
contain >1 point.

▶ Idea: banding. Try, try again.

▶ Build multiple NNProjectionGrids with
different random projections.

▶ Find points_in_cell for each, pool them
together.

Multiple Random Projections

𝑈1 𝑈2 𝑈3

Locality Sensitive Hashing

▶ This idea (multiple random projections) is an
example of Locality Sensitive Hashing (LSH).

▶ We’ll explore it more in the next section.

class LocalitySensitiveHashing:

def __init__(self, l, k, d, w):
self.randomized_grids = []
for i in range(l):

U = gaussian_projection_matrix(k, d)
randomized_grid = NNProjectionGrid(U, w)
self.randomized_grids.append(randomized_grid)

def insert(self, p):
for randomized_grid in self.randomized_grids:

randomized_grid.insert(p)

...

...

def query_close(self, p):
nearby = []
for randomized_grid in self.randomized_grids:

points_in_cell = randomized_grid.points_in_cell(p)
nearby.append(points_in_cell)

return np.vstack(nearby)

def query_nn(self, point):
results = self.query_close(point)
pool = np.vstack([r for r in results])
if len(pool) == 0:

raise ValueError('No points nearby.')
return brute_force_nn(pool, point)

Parameters

▶ l: number of randomized “grids”

▶ k: number of random directions in each “grid”

▶ w: bin width

Tuning Parameters

▶ Choose so that .query_close returns a small #
of points.

▶ If # is very small (or zero), either:
▶ increase 𝑤 or ℓ
▶ decrease 𝑘

Note

▶ This is an approximate NN technique!

▶ May not find the NN.

▶ May not return anything!

Lecture 7 | Part 4

Theory of Locality Sensitive Hashing

Why does LSH work?

▶ Two approaches to understanding LSH.

▶ 1) Hashing view.

▶ 2) Dimensionality reduction view.

Standard Hashing

▶ A hash function ℎ ∶ X → ℤ takes in an object
from X and returns a bucket number.

Standard Hashing

▶ Collision: two different objects have same hash.

▶ Usually, collisions are bad.

▶ Want similar things to have very different hashes.

Locality Sensitive Hashing

▶ But in NN search, we want “close” items to be in
the same bucket (have same hash).

▶ “Far” items should be in different buckets (have
different hash).

Locality Sensitive Hashing

▶ Let 𝑟 be a distance we consider “close”.

▶ Let 𝑐𝑟 (with 𝑐 > 1) be a distance we consider “far”.

▶ Suppose 𝐻 is a family of hash functions.

LSH Family

▶ 𝐻 is an LSH family if when ℎ is randomly drawn
from 𝐻:

ℙ(ℎ(𝑥) = ℎ(𝑦)) ≥ 𝑝1 when 𝑑(𝑥, 𝑦) ≤ 𝑟
ℙ(ℎ(𝑥) = ℎ(𝑦)) ≤ 𝑝2 when 𝑑(𝑥, 𝑦) ≥ 𝑐𝑟

where 𝑝1 > 𝑝2.

Main Idea

If 𝑥 and 𝑦 are close, the probability that they hash
to the same bin is not too small. If they are far, the
probability is not too large.

Example: Random Projections

▶ We have seen one LSH family: random
projections followed by binning.

▶ 𝐻 has infinitely-many hash functions, one for
each direction 𝑢⃗:

ℎ𝑢⃗(𝑝⃗) = ⌊
𝑢⃗ ⋅ 𝑝⃗
𝑤 ⌋ ,

Example: Random Projections

▶ Suppose a random hash function ℎ is chosen.

▶ Claim:

ℙ(ℎ(𝑥) = ℎ(𝑦)) ≥ 12 when 𝑑(𝑥, 𝑦) ≤ 𝑤/2

ℙ(ℎ(𝑥) = ℎ(𝑦)) ≤ 13 when 𝑑(𝑥, 𝑦) ≥ 2𝑤

Intuition

Proof: Close

▶ In worst case, grid is orthogonal to line between
points.

𝑥 𝑦
𝑤/2

𝑤

Proof: Far

▶ Only possible if grid is close to parallel.

𝑥 𝑦
2𝑤

𝑤

Proof: Far

▶ Angle must be below 30∘.

𝑥 𝑦
2𝑤

Amplification

▶ Lots of points have same hash.

▶ To be more selective, randomly select 𝑘 hash
functions for cell id.

cell-id(𝑥) = (ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑘(𝑥))

Example: Random Projections

▶ In case of random projections.

cell-id(𝑝⃗) = (⌊𝑢⃗
(1) ⋅ 𝑝⃗
𝑤 ⌋

⏟
ℎ1

, ⌊𝑢⃗
(2) ⋅ 𝑝⃗
𝑤 ⌋

⏟
ℎ2

, … , ⌊𝑢⃗
(𝑘) ⋅ 𝑝⃗
𝑤 ⌋

⏟
ℎ𝑘

)

Collision Probability

▶ Remember:

𝑃(ℎ(𝑥) = ℎ(𝑦)) ≥ 𝑝1 if close.
𝑃(ℎ(𝑥) = ℎ(𝑦)) ≤ 𝑝2 if far.

▶ Collision occurs if ℎ𝑖(𝑥) = ℎ𝑖(𝑦) ∀𝑖 ∈ {1, … , 𝑘}.

▶ Probability of collision...
▶ if close: ≥ 𝑝𝑘1
▶ if far: ≤ 𝑝𝑘2

Choosing 𝑘

▶ Want prob. of far points colliding to be small.

▶ Say, 1/𝑛.

▶ Set 𝑝𝑘2 = 1/𝑛. Then

𝑘 = log𝑝2
1
𝑛 = −

log 𝑛
log 𝑝2

Main Idea

We can use 𝑘 = Θ(log 𝑛) hash functions.

Main Idea

When using random projections as hash functions,
we can use 𝑘 = Θ(log 𝑛) directions. This is usually
much less than 𝑑.

But wait...

▶ Probability of close points colliding is 𝑝𝑘1.

▶ Let 𝑝1 = 𝑝
𝜌
2. We’ll have 𝜌 < 1, since 𝑝2 < 𝑝1.

▶ Since 𝑝𝑘2 = 1
𝑛 , we have 𝑝𝑘1 = 1

𝑛𝜌 .

▶ This is very small.

Banding

▶ Before: one set of 𝑘 hash functions.

▶ With banding: keep ℓ sets (bands) of 𝑘 hash
functions.

▶ To query NN of 𝑝, find points that are in the same
cell as 𝑝 in any of the bands.

Banding

▶ Probability of at least one match:

1
𝑛𝜌⏟

collision in band 1

+ 1
𝑛𝜌⏟

collision in band 2

+…+ 1
𝑛𝜌⏟

collision in band ℓ

= ℓ
𝑛𝜌

▶ Want this to be ≈ 1, so:

ℓ = 𝑛𝜌

Main Idea

We should set the number of bands to be 𝑛𝜌. 𝜌
depends on 𝑐, and is usually not small. For random
projections, 𝜌 ≈ .63.

Analysis

▶ How efficient is LSH?

▶ Worst case, everything hashes to same bin: 𝑂(𝑛).

▶ In practice, much better.

▶ Requires a lot of memory. Θ(ℓ𝑛).

Other Distances

▶ LSH works for many different similarity measures.

▶ Random projections are for Euclidean distances.

▶ But other hashing approaches work for cosine
distance, Jaccard distance, etc.

Lecture 7 | Part 5

The Johnson-Lindenstrauss Lemma

Why does LSH work?

▶ Two approaches to understanding LSH.

▶ 1) Hashing view.

▶ 2) Dimensionality reduction view.

Main Idea

The Johnson-Lindenstrauss Lemma says that,
given 𝑛 points in ℝ𝑑, you can reduce the dimen-
sionality to 𝑘 ≈ log 𝑛 while still preserving relative
distances by randomly projecting onto a set of 𝑘
unit vectors.

Claim

The Johnson-Lindenstrauss Lemma (Infor-
mal). Let 𝑋 be a set of 𝑛 points in ℝ𝑑. Let
𝑈 be a matrix whose 𝑘 = 𝑂(log(𝑛)/𝜖2) rows
are Gaussian random vectors in ℝ𝑑. Then
for every ⃗𝑥, ⃗𝑦 ∈ 𝑋,

‖ ⃗𝑥 − ⃗𝑦‖ ≤ (1 ± 𝜖)‖𝑈 ⃗𝑥 − 𝑈 ⃗𝑦‖

LSH and J-L

▶ In LSH, we use 𝑘 = 𝑂(log 𝑛) hash functions.

▶ If these hash functions are random projections,
the J-L lemma tells that distances are largely
preserved.

A Different View of LSH

▶ Given 𝑝 ∈ ℝ𝑑, randomly project to ℝ𝑘 with
𝑘 ≈ log 𝑛.

▶ Let new coordinates be (𝑦1, 𝑦2, … , 𝑦𝑘).

▶ Use standard grid to assign cell id.

Main Idea

LSH (for Euclidean distances) (without banding)
can be viewed as dimensionality reduction by ran-
dom projections, followed by binning into a stan-
dard grid.

Lecture 7 | Part 6

NN in Practice

In Practice

▶ LSH is an important idea.2

▶ Good performance in practice.

▶ But heuristic approaches are often faster.

▶ faiss and annoy, among others.

2https://cseweb.ucsd.edu/~dasgupta/papers/fly-lsh.pdf

https://cseweb.ucsd.edu/~dasgupta/papers/fly-lsh.pdf

Demo

▶ A demo notebook is available at dsc190.com

http://dsc190.com

Other Approaches

▶ Hierarchical k-means.

▶ Product quantization.

▶ Navigable small worlds.

