DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 7 | Part 1

Approximate Nearest Neighbors

Last Time

We saw kd-trees.

- Enable fast nearest neighbor queries.
 - \triangleright $\Theta(\log n)$ time in low dimensions.

Why, exactly?

- Why do we need the exact NN?
- Often something close would do.
- Especially if not confident in distance measure.
 - As is the case in high dimensions.
- Maybe this can be done faster?

ANN

Given: A set of points and a query point, *p*.

Return: An approximate nearest neighbor.

k-D ANNs

- So far, our k-d trees find **exact** nearest neighbor.
- But there's a very simple way to do ANN query.
- Idea: prune more aggressively.

Before

- Let d_{nn} be distance from query point to best so far.
- Let d_{bound} be distance from query point to boundary.
- ► Search branch only if $d_{\text{bound}} < d_{\text{nn}}$.

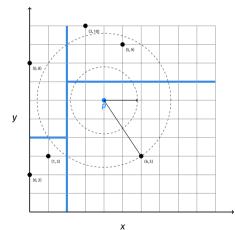
Now

- ► Take $\alpha \ge 1$ as a parameter.
- ► Search branch only if $d_{\text{bound}} < d_{\text{nn}}/\alpha$.
- ▶ **Idea**: make it easier to toss out branch.
- ightharpoonup If α = 1; exact search.
- If α > 1; approximate, faster as α grows.

Theory

- Let q be exact NN, let q_{ann} be that found by this strategy.
- Then:

$$d(p,q_{ann}) \le \alpha \cdot d(p,q)$$



Now

Another approach for approximate nearest neighbors: Locality Sensitive Hashing (LSH).

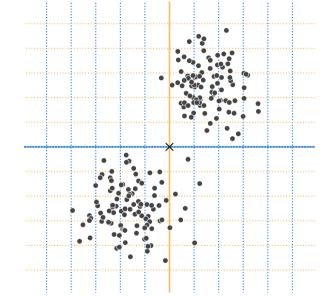
DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 7 | Part 2

Implementing a NN Grid

Grids

- Given input point p, want quick way to find nearby points.
- Idea: divide space into cells using grid.
- Find cell containing *p*, search it.
- ► How would we implement this?



Grid Cells

- Each point (x, y) given cell id: ([x], [y])
 - Example: (1.2, 6.7) given cell id (1, 6).
- ightharpoonup Store (x, y) in dictionary with cell id as key.
 - Discretization allows multiple points in same cell.
 - Store collisions in list.

Generalizes naturally to d-dimensions.

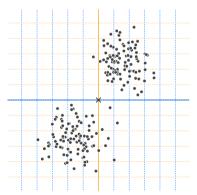
```
class NNGrid:
   def init (self. width):
        self.width = width
        self.cells = {}
   def cell id(self, p):
        p = np.asarrav(p)
        cell id = np.floor(p / self.width).astype(int)
        return tuple(cell id)
   def insert(self. p):
        """Insert p into the grid."""
        cell id = self.cell id(p)
        if cell id not in self.cells:
            self.cells[cell id] = []
        self.cells[cell id].append(p)
```

. . .

```
def points in cell(self, p):
    cell id = self.cell id(p)
    if cell id not in self.cells:
        return []
    points_in_cell = self.cells[cell id]
    # turn into an array
    return np.vstack(points in cell)
def guerv(self. p):
    return brute_force_nn(self.points_in_cell(p), p)
```

Note

► This may **fail** – NN could be in different cell.



Problems

▶ In *d* dimensions, cell id has *d* entries.

$$cell-id(p) = ([x_1/w], [x_2/w], ..., [x_d/w])$$

- All entries must be **exactly** the same for two points to have same cell id.
- This is very unlikely. Most cells are empty or contain one point.

High-Dimensional Cuboids

- One "fix": increase cell width parameter.
- Suppose we want it to be likely that any points within distance r are in same cell.
- ► Then cell width should be $\approx 2r$.

High-Dimensional Cuboids

But a *d*-dimensional cuboid of width 2r can contain points at distance $2\sqrt{dr}$ from one another!

For even modest *r*, the whole data set is in one cell.

Main Idea

Dividing into a grid of cuboids fails in high dimensions. Either the cells are empty, or contain everything, depending on the width!

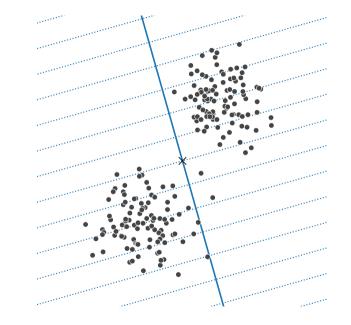
DSC 190 DATA STRUCTURES & ALGORITHMS

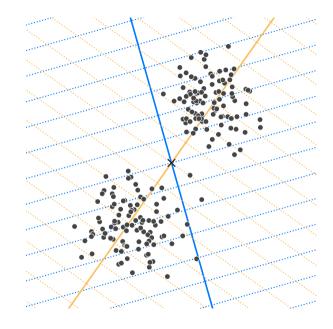
Lecture 7 | Part 3

A Randomized "Grid"

A Randomized "Grid"

▶ Idea: Instead of axis-aligned grid, divide into cells using $k \ll d$ random directions.





Cell Shape

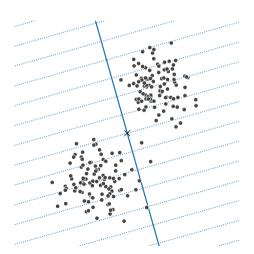
- Cells are no longer d-dimensional cuboids.
- ► They are random *k*-dimensional polytopes.

Question

▶ Why is this better? We'll see in the next sections.

Projection

► How do we determine which cell a point lies in?



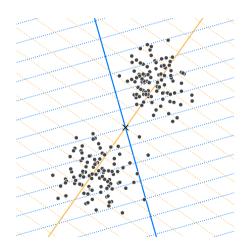
Cell IDs

- ▶ Pick *k* random unit vectors, $\vec{u}^{(1)}$, ..., $\vec{u}^{(k)} \in \mathbb{R}^d$.
- Pick a width parameter, w.
- ► Given any point \vec{p} , its cell id is¹:

$$cell-id(\vec{p}) = \left(\left| \frac{\vec{u}^{(1)} \cdot \vec{p}}{w} \right|, \left| \frac{\vec{u}^{(2)} \cdot \vec{p}}{w} \right|, \dots, \left| \frac{\vec{u}^{(k)} \cdot \vec{p}}{w} \right|, \right)$$

¹use same width and unit vectors for all points

Example



Quick Cell-ID Calculation

▶ Place $\vec{u}^{(1)}, ..., \vec{u}^{(k)}$ into a matrix:

$$U = \begin{pmatrix} \leftarrow & (\vec{u}^{(1)})^T & \rightarrow \\ \leftarrow & (\vec{u}^{(2)})^T & \rightarrow \\ \vdots & \vdots & \vdots \\ \leftarrow & (\vec{u}^{(k)})^T & \rightarrow \end{pmatrix}$$

Then cell-id(\vec{p}) = entrywise-floor($U\vec{p}/w$)

Generating Random Unit Vectors

```
def gaussian_projection_matrix(k, d):
    X = np.random.normal(size=(k, d))
    U = X / np.linalg.norm(X, axis=1)[:,None]
    return U
```

class NNProjectionGrid

```
def __init__(self, projection_matrix, width):
    self.width = width
    self.projection_matrix = projection_matrix
    self.cells = {}
```

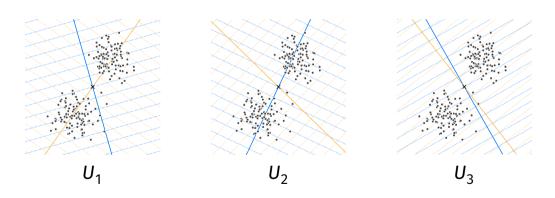
```
def cell_id(self, p):
    projection = self.projection_matrix @ p
    cell_id = np.floor(projection / self.width)
    return tuple(cell_id.astype(int))
```

insert, query, points_in_cell same as for NNGrid

But wait...

- ► In high dimensions, still **very unlikely** for cell to contain >1 point.
- Idea: banding. Try, try again.
- Build multiple NNProjectionGrids with different random projections.
- Find points_in_cell for each, pool them together.

Multiple Random Projections



Locality Sensitive Hashing

- This idea (multiple random projections) is an example of Locality Sensitive Hashing (LSH).
- ▶ We'll explore it more in the next section.

class LocalitySensitiveHashing:

```
def __init__(self, l, k, d, w):
    self.randomized_grids = []
    for i in range(l):
        U = gaussian_projection_matrix(k, d)
        randomized_grid = NNProjectionGrid(U, w)
        self.randomized_grids.append(randomized_grid)
```

```
def insert(self, p):
    for randomized_grid in self.randomized_grids:
        randomized_grid.insert(p)
```

. . .

```
. . .
def guery close(self, p):
    nearby = []
    for randomized grid in self.randomized grids:
        points in cell = randomized grid.points in cell(p)
        nearby.append(points in cell)
    return np.vstack(nearbv)
def query nn(self, point):
    results = self.query close(point)
    pool = np.vstack([r for r in results])
```

raise ValueError('No points nearby.')

return brute force nn(pool, point)

if len(pool) == 0:

Parameters

► 1: number of randomized "grids"

k: number of random directions in each "grid"

w: bin width

Tuning Parameters

- Choose so that .query_close returns a small # of points.
- If # is very small (or zero), either:
 - ▶ increase w or ℓ
 - decrease k

Note

- ► This is an approximate NN technique!
- May not find the NN.
- May not return anything!

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 7 | Part 4

Theory of Locality Sensitive Hashing

Why does LSH work?

- Two approaches to understanding LSH.
- ▶ 1) Hashing view.
- 2) Dimensionality reduction view.

Standard Hashing

▶ A hash function $h: \mathcal{X} \to \mathbb{Z}$ takes in an object from \mathcal{X} and returns a bucket number.

Standard Hashing

- Collision: two different objects have same hash.
- Usually, collisions are bad.
- Want similar things to have very different hashes.

Locality Sensitive Hashing

- ▶ But in NN search, we want "close" items to be in the same bucket (have same hash).
- "Far" items should be in different buckets (have different hash).

Locality Sensitive Hashing

- Let *r* be a distance we consider "close".
- Let cr (with c > 1) be a distance we consider "far".
- Suppose H is a family of hash functions.

LSH Family

H is an LSH family if when h is randomly drawn from H:

$$\mathbb{P}(h(x) = h(y)) \ge p_1$$
 when $d(x, y) \le r$
 $\mathbb{P}(h(x) = h(y)) \le p_2$ when $d(x, y) \ge cr$

where $p_1 > p_2$.

Main Idea

If x and y are close, the probability that they hash to the **same** bin is not too small. If they are far, the probability is not too large.

Example: Random Projections

- We have seen one LSH family: random projections followed by binning.
- H has infinitely-many hash functions, one for each direction \vec{u} :

$$h_{\vec{u}}(\vec{p}) = \left| \frac{\vec{u} \cdot \vec{p}}{w} \right|,$$

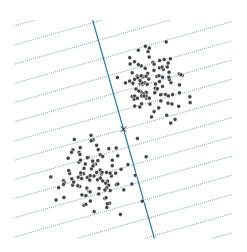
Example: Random Projections

- Suppose a random hash function h is chosen.
- Claim:

$$\mathbb{P}(h(x) = h(y)) \ge \frac{1}{2}$$
 when $d(x, y) \le w/2$

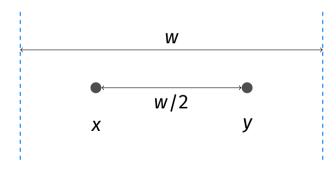
$$\mathbb{P}(h(x) = h(y)) \le \frac{1}{3}$$
 when $d(x, y) \ge 2w$

Intuition



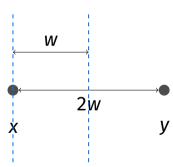
Proof: Close

In worst case, grid is orthogonal to line between points.



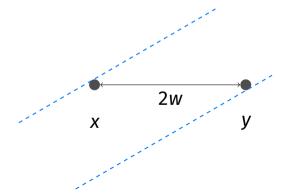
Proof: Far

Only possible if grid is close to parallel.



Proof: Far

► Angle must be below 30°.



Amplification

- Lots of points have same hash.
- To be more selective, randomly select *k* hash functions for cell id.

$$cell-id(x) = (h_1(x), h_2(x), ..., h_k(x))$$

Example: Random Projections

In case of random projections.

$$cell-id(\vec{p}) = \left(\underbrace{\left[\frac{\vec{u}^{(1)} \cdot \vec{p}}{w} \right]}_{h_1}, \underbrace{\left[\frac{\vec{u}^{(2)} \cdot \vec{p}}{w} \right]}_{h_2}, \dots, \underbrace{\left[\frac{\vec{u}^{(k)} \cdot \vec{p}}{w} \right]}_{h_k} \right)$$

Collision Probability

Remember:

$$P(h(x) = h(y)) \ge p_1$$
 if close.
 $P(h(x) = h(y)) \le p_2$ if far.

- ► Collision occurs if $h_i(x) = h_i(y) \forall i \in \{1, ..., k\}$.
- Probability of collision...
 - ▶ if close: $\geq p_1^k$
 - ▶ if far: $\leq p_2^k$

Choosing *k*

- ▶ Want prob. of far points colliding to be small.
- ► Say, 1/*n*.
- ► Set $p_2^k = 1/n$. Then

$$k = \log_{p_2} \frac{1}{n} = -\frac{\log n}{\log p_2}$$

<u>Mai</u>n Idea

We can use $k = \Theta(\log n)$ hash functions.

Main Idea

When using random projections as hash functions, we can use $k = \Theta(\log n)$ directions. This is usually much less than d.

But wait...

- Probability of close points colliding is p_1^k .
- Let $p_1 = p_2^{\rho}$. We'll have $\rho < 1$, since $p_2 < p_1$.
- ► Since $p_2^k = \frac{1}{n}$, we have $p_1^k = \frac{1}{n^p}$.
- This is very small.

Banding

- ▶ Before: one set of *k* hash functions.
- With banding: keep ℓ sets (bands) of k hash functions.

To query NN of *p*, find points that are in the same cell as *p* in *any* of the bands.

Banding

Probability of at least one match:

$$\frac{1}{\underline{n}^{\rho}} + \frac{1}{\underline{n}^{\rho}} + \dots + \frac{1}{\underline{n}^{\rho}} = \frac{\ell}{n^{\rho}}$$
collision in band 1 collision in band 2 collision in band ℓ

Want this to be ≈ 1, so:

$$\ell = n^{\rho}$$

Main Idea

We should set the number of bands to be n^{ρ} . ρ depends on c, and is usually not small. For random projections, $\rho \approx .63$.

Analysis

- ▶ How efficient is LSH?
- \triangleright Worst case, everything hashes to same bin: O(n).
- In practice, much better.
- Requires **a lot** of memory. $\Theta(ln)$.

Other Distances

- LSH works for many different similarity measures.
- Random projections are for Euclidean distances.
- But other hashing approaches work for cosine distance, Jaccard distance, etc.

Lecture 7 | Part 5

The Johnson-Lindenstrauss Lemma

Why does LSH work?

- Two approaches to understanding LSH.
- ▶ 1) Hashing view.
- 2) Dimensionality reduction view.

Main Idea

The **Johnson-Lindenstrauss Lemma** says that, given n points in \mathbb{R}^d , you can reduce the dimensionality to $k \approx \log n$ while still preserving relative distances by randomly projecting onto a set of k unit vectors.

Claim

The **Johnson-Lindenstrauss Lemma** (Informal). Let X be a set of n points in \mathbb{R}^d . Let U be a matrix whose $k = O(\log(n)/\epsilon^2)$ rows are Gaussian random vectors in \mathbb{R}^d . Then

$$\|\vec{x} - \vec{y}\| \le (1 \pm \epsilon) \|U\vec{x} - U\vec{y}\|$$

for every \vec{x} , $\vec{y} \in X$.

LSH and J-L

- ▶ In LSH, we use $k = O(\log n)$ hash functions.
- ▶ If these hash functions are random projections, the J-L lemma tells that distances are largely preserved.

A Different View of LSH

- ▶ Given $p \in \mathbb{R}^d$, randomly project to \mathbb{R}^k with $k \approx \log n$.
- Let new coordinates be $(y_1, y_2, ..., y_k)$.
- Use standard grid to assign cell id.

Main Idea

LSH (for Euclidean distances) (without banding) can be viewed as dimensionality reduction by random projections, followed by binning into a standard grid.

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 7 | Part 6

NN in Practice

In Practice

- ► LSH is an important idea.²
- Good performance in practice.
- ▶ But heuristic approaches are often faster.
- ▶ faiss and annoy, among others.

²https://cseweb.ucsd.edu/~dasgupta/papers/fly-lsh.pdf

Demo

► A demo notebook is available at dsc190.com

Other Approaches

- Hierarchical k-means.
- Product quantization.
- Navigable small worlds.