DSC 190 Lecture 6 Part 1 Today's Lectur

Nearest Neighbors

- Finding the closest data point to a query point is a common operation.
- In machine learning, at the core of the nearest neighbor classifier.

NN Classifier

NN Query

- Given: a data set X of n points in \mathbb{R}^{d} and a query point, $p \in \mathbb{R}^{d}$.
- Return: the point in X that is nearest ${ }^{1}$ to p

[^0]
Approach \#1: Brute Force

- Compute distance between p and every point $x \in X$, keep closest.
- Time: $\Theta(n d)$

Intuitively...

...we can do better. We only need to look at region close to p.

def brute_force_nn_search(data, p): """Find nearestè neighbor.

Parameters
data : np.ndarray An n x d array of points.
p : np.ndarray
A d-array representing the query point.
Returns

```
-------
```

nn : np.ndarray
The closest point.
nn_distance : float
Distance to closest point.
"""
distances $=n p . s q r t(n p . s u m((d a t a-p) * * 2, ~ a x i s=1))$
ix_of_nn = np.argmin(distances)
nn = data[ix_of_nn]
nn_distance = distances[ix_of_nn]
return (nn, nn_distance)

Approach \#2

- Build a grid.
- To query NN, find cell containing p.
- Start search in p's cell, move outwards.

Intuitively...

Problems

- How do we choose grid cell size?
- Too big: cells contain a lot of points = brute force.
- Too small: Most of the cells are empty.
- "Just right" for one region might be too big/small for another region.
- Number of cells grows exponentially with dimension.

Today

- We'll refine the idea of a grid.
- Adapt cell placement/size to the data.
> Result: k-d trees.

k-d Trees

- Will speed up NN queries in low dimensions (<10) from $\Theta(n)$ to $\Theta(\log n)$.
- But will be just as bad as brute force in high dimensions.

DST 190 Lecture $6 \mid$ Part
k-d Trees

k-d Trees

- Binary search tree for multidimensional data.
- Now: structure \& properties.
- Next section: how to query them.
- Next next section: how to construct them.

Internal Nodes

- Internal nodes are threshold questions.
- can be of form $x \geq T$? or $y \geq T$? in 2-d.
\Rightarrow can be of form $x \geq t$? or $y \geq t$? or $z \geq T$? in 3-d.
- etc.
all points with $x<2$ all points with $x \geq 2$

Internal Nodes

- A path forms a conjunction.

Leaf Nodes

- Leaf nodes are (collections of) points.

Partitioning

Each internal node splits space.

k-d Trees in Python

```
from dataclasses import dataclass
from typing import Union, Optional
import numpy as np
@dataclass
class KDInternalNode:
    # the left and right children can be internal nodes
    # or numpy arrays of points (leaf nodes)
    left: Union['KDInternalNode', np.ndarray]
    right: Union['KDInternalNode', np.ndarray]
    # the threshold tau in the question
    threshold: float
    # the dimension used in the question
    dimension: int
```

DSC 190
data structur Lecture $6 \mid$ Part 3
Queries on $k-d$ Trees

Types of Queries

- Standard query:
\Rightarrow Is $(1,5)$ in the tree?
- Nearest neighbor query:
- Return the nearest neighbor(s) of $(1,5)$.

Standard Queries

Is $(6,3)$ in the tree? Is $(1,5)$ in the tree?

Standard Queries

- Similar to BST query.
- Recursively choose left/right by answering question.
- Brute-force linear search on leaf (if needed).
- Takes $O(h)$ time, where h is height of the tree ${ }^{2}$.

[^1]
Nearest Neighbor Queries

- Given query point $p=(x, y)$, find nearest neighbor in tree.
- Can we just do a standard query?
$>$ Find cell that would contain (x, y).
- Return closest neighbor within that cell.

No

Example: $p=(3,3)$.

Main Idea

It is not always sufficient to only check the cell that p would be placed in. You may also need to check neighboring cells (which can be very far away in the tree).

Brute Force?

- This suggests we need to traverse the whole tree.
- But we can actually do much better.
- Intuitively, some branches can be ruled out (pruned).

Example

Example: $p=(5,3)$.

Bounding Branches

\Rightarrow Observation: let $d_{\text {bound }}$ be distance from p to the boundary.

- Then the closest a point in the other branch can be to p is $d_{\text {bound }}$
- If we search and find a point whose distance to p is less than $d_{\text {bound }}$, we do not need to search other branch.

Bounding Branches

To query NN of (x, y):

- Search right branch first if $x \geq t$, otherwise search left branch first.
- Let d_{nn} be the distance from p to the closest point found.
- Let $d_{\text {bound }}$ be the distance from p to boundary.
- Search other branch only if $d_{\text {bound }}<d_{n n}$.

Apply this idea recursively.

Example

> NN Query: $(5,3)$

Example

> NN Query: $(3,3)$


```
def nn_query(node, p):
    if isinstance(node, np.ndarray):
    return brute_force_nn_search(node, p)
    else:
        # find the most likely branch
        if p[node.dimension] >= node.threshold:
            most_likely_branch, other_branch = node.right, node.left
        else:
            most_likely_branch, other_branch = node.left, node.right
        # compute distance to boundary
        distance_to_boundary = abs(p[node.dimension] - node.threshold)
        # find nn within most likely branch
        nn, nn_distance = nn_query(most_likely_branch, p)
        # check the other branch, but only if necessary
        if distance_to_boundary < nn_distance:
            nn_other, nn_other_distance = nn_query(other_branch, p)
            # check if the nn within this branch is closer
            if nn_other_distance < nn_distance:
            nn = nn_other
            nn_distance = nn_other_distance
        return nn, nn_distance
```


k-NN Search

- Sometimes we want to find k nearest neighbors.
- Keep a max heap of best k so far.
- Check branch if distance to boundary < k th closest.

Analysis

- Assume each leaf has bounded number of points.
- Best case: $\Theta(h) \rightarrow \Theta(\log n)$ if balanced
- Worst case: $\Theta(n)$.
- We may be unable to rule out many of the branches.
- Can occur even if tree is balanced.
- Especially if query point far from data.
- Note: balancing is difficult, but possible.

Example of Worst Case

- NN Query: $(20,20)$
- Closest point is $(5,9)$ at distance ≈ 19

Performance Degradation

- In small dimensions, NN lookup usually takes $\Theta(\log n)$.
- We'll see performance degrades to $\Theta(n)$ (brute force) as dimensionality $\rightarrow \infty$.
- Curse of Dimensionality

DST 190
Lecture 6 | Part 4 Lecture $6 \mid$ Part 4
Constructing ked Tree

Construction

Given: a set of n data points in \mathbb{R}^{d}

- Construct: a k-d tree containing these points.

Caveats

- There are many variations on k-d tree construction.
- We'll describe one popular approach.
- Assumption: offline construction.
$>$ Have all of the data at once (no insert/delete).

Idea

- Starting with n points, either:
$>$ make internal node by splitting ($x \geq t$?)
- make leaf node containing the points
- Apply this strategy recursively.
- Questions:
- Do we split, or do we make a leaf?
- If we split:
- What dimension to split on?
- What threshold to use?

Q1: Do we split?

- Take parameter M (max leaf size).
- If $n<M$, don't split.
- Reason: For small n, brute force is actually faster (less overhead).

Q2: Which dimension to split on?

- Choose dimension with largest spread.
> Difference between largest and smallest values.
- Calculated using only points in this subtree.
- Alternatively: round-robin. Split x, y, z, x, y, \ldots

Q3: What threshold to use?

- Need threshold, τ.
- Use median value in splitting dimension.
- Calculated using only points in this subtree.
- Guaranteed to produce balanced tree.
- Alternatively: randomly-selected pivot, or median of random selection

Set $M=2$, use median and spread for splitting. We start with data:

$\{(1,1),(4,2),(5,2),(1,5),(1,6),(7,7),(8,9)\}$

x	y
4	2
1	1
5	2
1	6
7	7
8	9
2	5

- Spread of x : 7
\Rightarrow Spread of y : 8
- Use y as splitting dimension.
> Median of $y: 5$.

Set $M=2$, use median and spread for splitting. We start with data:

x	y
4	2
1	1
5	2
1	6
7	7
8	9
2	5

\Rightarrow Spread of x : 7
\Rightarrow Spread of y : 8

- Use y as splitting dimension.
- Median of $y: 5$.

Recurse on left child. Data becomes:

x	y
4	2
1	1
5	2

\Rightarrow Spread of x : 4

- Spread of y : 1
- Use x as splitting dimension.
- Median of $x: 4$.

Recurse on left child. Data becomes:

x	y
4	2
1	1
5	2

- Spread of x : 4
- Spread of y : 1
- Use x as splitting dimension.
- Median of $x: 4$.

Recurse on children. Since size $<=M$, these become leaf nodes.

$\mathfrak{C}(1,1):(4,2),(5,2)$

Recurse on children. Since size $<=M$, these become leaf nodes.

Unroll recursion, now recurse down right side of tree. Data becomes:

x	y
1	6
7	7
8	9
2	5

- Spread of x : 7
\Rightarrow Spread of y : 4
- Use x as splitting dimension.
\Rightarrow Median of x : 7 (or 2).

Unroll recursion, now recurse down right side of tree. Data becomes:

x	y
1	6
7	7
8	9
2	5

\Rightarrow Spread of x : 7
\Rightarrow Spread of $y: 4$

- Use x as splitting dimension.
\Rightarrow Median of x : 7 (or 2).

Make leaf nodes, since size $\leq M$.

Make leaf nodes, since size $\leq M$.

Tree complete!


```
def build_kd_tree(data, m=2):
    if le\overline{n}(dāta) <= m:
        return data
    # find the dimension with greatest spread
    spread = data.max(axis=0) - data.min(axis=0)
    splitting_dimension = np.argmax(spread)
    # find the median along this dimension
    median = np.median(data[:, splitting_dimension])
    # separate the data into new left and right sets
    # note that this isn't the most efficient since it will
    # produce a copy... better to do an in-place partition
    left_data = data[data[:, splitting_dimension] < median]
    right_data = data[data[:, splitting_dimension] >= median]
    left = build_kd_tree(left_data)
    right = buil\overline{d}_k\overline{d}_tree(rig\overline{h}t_data)
    return KDInternalNode(
        left=left, right=right, threshold=median,
        dimension=splitting_dimension
    )
```


Analysis

- $\Theta(k)$ to find median, perform copies, where k is number of points in subtree.
- Tree has $\Theta(\log n)$ levels (since it is balanced).
- Total time:

$$
\underbrace{n}_{\text {level } 1}+\underbrace{(n / 2+n / 2)}_{\text {level } 2}+\underbrace{(n / 4+n / 4+n / 4+n / 4)}_{\text {level } 3}+\ldots=\Theta(n \log n)
$$

Example

Example

Demo

A demo implementation of k-d trees is available at dsc190.com

DSC 190 Lecture $6 \mid$ Part 5
Curse of Dimensionality

Performance Degradation

- Brute force NN search takes $\Theta(n)$ time.
- If dimensionality is small, k-d trees take $\Theta(\log n)$. - Great speedup!
- As dimensionality grows, performance degrades.
- At worst, it is $\Theta(n)$.
- Becomes just as bad as brute force!
- Why?

Explanation \#1

Explanation \#1

Explanation \# 1

Main Idea

As d grows, the number of neighboring cells that we may need to check grows like 2^{d}.

Explanation \#2

- We saw that if query point is far away, we cannot rule out branches.
- The reason? Distance from query to NN is not significantly different from distance between query and other points.

Surprising Fact

- In high dimensions ${ }^{3}$, the ratio of the distance to nearest neighbor and distance to furthest neighbor $\rightarrow 1$.

${ }^{3}$ Under some assumptions on distribution of data.

Experiment

- Generate random d-dimensional query vector from multivariate Gaussian.
- Generate 1000 d-dimensional data points from same Gaussian.
- Plot distribution of distances.

Experiment

Experiment

Experiment

Experiment

Experiment

Experiment

Experiment

- Notice: width doesn't change, but center increases.
- So $\min =\max -\delta$, with δ constant.

$$
\frac{\min }{\max }=1-\frac{\delta}{\max }
$$

Explanation \#2

- Every point in data set is approximately equidistant to query point.
- Can't rule out branches.
- Have to perform a brute force search.

Main Idea

In high dimensions, every data point is approximately equidistant to the query point, meaning we can't rule out most branches.

Main Idea

Not only are k-d trees inefficient in high dimensions, Euclidean distance is less meaningful in high dimensions, and therefore so is the concept of NN search itself.

DSC 190
\qquad pproximate Nearest Neighbors

Why, exactly?

- Why do we need the exact NN?
- Often something close would do.
- Especially if not confident in distance measure.
$>$ As is the case in high dimensions.
- Maybe this can be done faster?

ANN

Given: A set of points and a query point, p.
Return: An approximate nearest neighbor.

k-D ANNs

- So far, our k-d trees find exact nearest neighbor.
- But there's a very simple way to do ANN query.
- Idea: prune more aggressively.

Before

Let d_{nn} be distance from query point to best so far.
Let $d_{\text {bound }}$ be distance from query point to boundary.
$>$ Search branch only if $d_{\text {bound }}<d_{\mathrm{nn}}$.

Now

- Take $\alpha \geq 1$ as a parameter.
$>$ Search branch only if $d_{\text {bound }}<d_{\mathrm{nn}} / \alpha$.
- Idea: make it easier to toss out branch.
- If $\alpha=1$; exact search.
- If $\alpha>1$; approximate, faster as α grows.

Theory

- Let q be exact $N N$, let $q_{\text {ann }}$ be that found by this strategy.
- Then:

$$
d\left(p, q_{\text {ann }}\right) \leq \alpha \cdot d(p, q)
$$

Next Time

ANNs via Locality Sensitive Hashing.

[^0]: ${ }^{1}$ In terms of Euclidean distance, though other distances can be considered.

[^1]: ${ }^{2}$ Assuming each leaf has a bounded number of points.

