
Lecture 6 | Part 1

Today’s Lecture

Nearest Neighbors

▶ Finding the closest data point to a query point is
a common operation.

▶ In machine learning, at the core of the nearest
neighbor classifier.

NN Classifier

𝑥

𝑦

(1, 2)

(3, 4)

(1, 5)

(6, 7)

(6, 5)

(8, 6)

NN Query

▶ Given: a data set 𝑋 of 𝑛 points in ℝ𝑑 and a query
point, 𝑝 ∈ ℝ𝑑.

▶ Return: the point in 𝑋 that is nearest1 to 𝑝

1In terms of Euclidean distance, though other distances can be
considered.

Approach #1: Brute Force

▶ Compute distance between 𝑝 and every point
𝑥 ∈ 𝑋, keep closest.

▶ Time: Θ(𝑛𝑑)

Intuitively...

▶ ...we can do better. We only need to look at
region close to 𝑝.

𝑥

𝑦

(1, 2)

(3, 4)

(1, 5)

(6, 7)

(6, 5)

(8, 6)

def brute_force_nn_search(data, p):
”””Find nearest neighbor.

Parameters

data : np.ndarray

An n x d array of points.
p : np.ndarray

A d-array representing the query point.

Returns

nn : np.ndarray

The closest point.
nn_distance : float

Distance to closest point.

”””
distances = np.sqrt(np.sum((data - p)**2, axis=1))
ix_of_nn = np.argmin(distances)
nn = data[ix_of_nn]
nn_distance = distances[ix_of_nn]
return (nn, nn_distance)

Approach #2

▶ Build a grid.

▶ To query NN, find cell containing 𝑝.

▶ Start search in 𝑝’s cell, move outwards.

Intuitively...

𝑥

𝑦

(1, 2)

(3, 4)

(1, 5)

(6, 7)

(6, 5)

(8, 6)

Problems

▶ How do we choose grid cell size?
▶ Too big: cells contain a lot of points = brute force.
▶ Too small: Most of the cells are empty.
▶ “Just right” for one region might be too big/small for
another region.

▶ Number of cells grows exponentially with
dimension.

Today

▶ We’ll refine the idea of a grid.

▶ Adapt cell placement/size to the data.

▶ Result: k-d trees.

k-d Trees

▶ Will speed up NN queries in low dimensions (<10)
from Θ(𝑛) to Θ(log 𝑛).

▶ But will be just as bad as brute force in high
dimensions.

Lecture 6 | Part 2

k-d Trees

k-d Trees

▶ Binary search tree for multidimensional data.

▶ Now: structure & properties.

▶ Next section: how to query them.

▶ Next next section: how to construct them.

Internal Nodes

▶ Internal nodes are threshold questions.
▶ can be of form 𝑥 ≥ 𝜏? or 𝑦 ≥ 𝜏? in 2-d.

▶ can be of form 𝑥 ≥ 𝜏? or 𝑦 ≥ 𝜏? or 𝑧 ≥ 𝜏? in 3-d.
▶ etc.

is 𝑥 ≥ 2?

all points with 𝑥 < 2 all points with 𝑥 ≥ 2
no yes

Internal Nodes

▶ A path forms a conjunction.

is 𝑥 ≥ 2?

is 𝑦 ≥ 4?

all points with
𝑥 < 2 and 𝑦 < 4

all points with
𝑥 < 2 and 𝑦 ≥ 4

is 𝑦 ≥ 7?

all points with
𝑥 ≥ 2 and 𝑦 < 7

all points with
𝑥 ≥ 2 and 𝑦 ≥ 7

no

no yes

yes

no yes

Leaf Nodes

▶ Leaf nodes are (collections of) points.

is 𝑥 ≥ 2?

is 𝑦 ≥ 4?

(1, 3), (0,2) (0,8)

is 𝑦 ≥ 7?

(6,3) (5,9), (3, 10)

no

no yes

yes

no yes

Partitioning

▶ Each internal node splits space.

𝑥 ≥ 2
𝑦 ≥ 4

𝑦 ≥ 7

𝑥

𝑦

(1, 3)

(0, 2)

(0, 8)

(6, 3)

(5, 9)

(3, 10)

is 𝑥 ≥ 2?

is 𝑦 ≥ 4?

(1, 3), (0,2) (0,8)

is 𝑦 ≥ 7?

(6,3) (5,9), (3, 10)

no

no yes

yes

no yes

k-d Trees in Python
from dataclasses import dataclass
from typing import Union, Optional
import numpy as np

@dataclass
class KDInternalNode:

the left and right children can be internal nodes
or numpy arrays of points (leaf nodes)
left: Union['KDInternalNode', np.ndarray]
right: Union['KDInternalNode', np.ndarray]

the threshold tau in the question
threshold: float

the dimension used in the question
dimension: int

Lecture 6 | Part 3

Queries on k-d Trees

Types of Queries

▶ Standard query:
▶ Is (1, 5) in the tree?

▶ Nearest neighbor query:
▶ Return the nearest neighbor(s) of (1, 5).

Standard Queries

▶ Is (6,3) in the tree? Is (1, 5) in the tree?

is 𝑥 ≥ 2?

is 𝑦 ≥ 4?

(1, 3), (0,2) (0,8)

is 𝑦 ≥ 7?

(6,3) (5,9), (3, 10)

no

no yes

yes

no yes

Standard Queries

▶ Similar to BST query.
▶ Recursively choose left/right by answering question.
▶ Brute-force linear search on leaf (if needed).

▶ Takes 𝑂(ℎ) time, where ℎ is height of the tree2.

2Assuming each leaf has a bounded number of points.

Nearest Neighbor Queries

▶ Given query point 𝑝 = (𝑥, 𝑦), find nearest
neighbor in tree.

▶ Can we just do a standard query?
▶ Find cell that would contain (𝑥, 𝑦).
▶ Return closest neighbor within that cell.

No

▶ Example: 𝑝 = (3, 3).

𝑥 ≥ 2
𝑦 ≥ 4

𝑦 ≥ 7

𝑥

𝑦

(1, 3)

(0, 2)

(0, 8)

(6, 3)

(5, 9)

(3, 10)

𝑝

is 𝑥 ≥ 2?

is 𝑦 ≥ 4?

(1, 3), (0,2) (0,8)

is 𝑦 ≥ 7?

(6,3) (5,9), (3, 10)

no

no yes

yes

no yes

Main Idea

It is not always sufficient to only check the cell that
𝑝 would be placed in. You may also need to check
neighboring cells (which can be very far away in
the tree).

Brute Force?

▶ This suggests we need to traverse the whole tree.

▶ But we can actually do much better.

▶ Intuitively, some branches can be ruled out
(pruned).

Example

▶ Example: 𝑝 = (5, 3).

𝑥 ≥ 2
𝑦 ≥ 4

𝑦 ≥ 7

𝑥

𝑦

(1, 3)

(0, 2)

(0, 8)

(6, 3)

(5, 9)

(3, 10)

𝑝

is 𝑥 ≥ 2?

is 𝑦 ≥ 4?

(1, 3), (0,2) (0,8)

is 𝑦 ≥ 7?

(6,3) (5,9), (3, 10)

no

no yes

yes

no yes

Bounding Branches

is 𝑥 ≥ 𝜏?

points with
𝑥 < 𝜏

points with
𝑥 ≥ 𝜏

no yes

𝑥

𝑦 𝑥 ≥ 𝜏

𝑝

▶ Observation: let 𝑑bound be distance
from 𝑝 to the boundary.

▶ Then the closest a point in the other
branch can be to 𝑝 is 𝑑bound

▶ If we search and find a point whose dis-
tance to 𝑝 is less than 𝑑bound, we do not
need to search other branch.

Bounding Branches

is 𝑥 ≥ 𝜏?

points with
𝑥 < 𝜏

points with
𝑥 ≥ 𝜏

no yes

𝑥

𝑦 𝑥 ≥ 𝜏

𝑝

To query NN of (𝑥, 𝑦):

▶ Search right branch first if 𝑥 ≥ 𝑡, other-
wise search left branch first.

▶ Let 𝑑nn be the distance from 𝑝 to the
closest point found.

▶ Let 𝑑bound be the distance from 𝑝 to
boundary.

▶ Search other branch only if 𝑑bound < 𝑑nn.

Apply this idea recursively.

Example

▶ NN Query: (5, 3)

is 𝑥 ≥ 2?

is 𝑦 ≥ 4?

(1, 3), (0,2) (0,8)

is 𝑦 ≥ 7?

(6,3) (5,9), (3, 10)

no

no yes

yes

no yes

Example

▶ NN Query: (3, 3)

is 𝑥 ≥ 2?

is 𝑦 ≥ 4?

(1, 3), (0,2) (0,8)

is 𝑦 ≥ 7?

(6,3) (5,9), (3, 10)

no

no yes

yes

no yes

def nn_query(node, p):
if isinstance(node, np.ndarray):

return brute_force_nn_search(node, p)
else:

find the most likely branch
if p[node.dimension] >= node.threshold:

most_likely_branch, other_branch = node.right, node.left
else:

most_likely_branch, other_branch = node.left, node.right

compute distance to boundary
distance_to_boundary = abs(p[node.dimension] - node.threshold)

find nn within most likely branch
nn, nn_distance = nn_query(most_likely_branch, p)

check the other branch, but only if necessary
if distance_to_boundary < nn_distance:

nn_other, nn_other_distance = nn_query(other_branch, p)

check if the nn within this branch is closer
if nn_other_distance < nn_distance:

nn = nn_other
nn_distance = nn_other_distance

return nn, nn_distance

k-NN Search

▶ Sometimes we want to find 𝑘 nearest neighbors.

▶ Keep a max heap of best 𝑘 so far.

▶ Check branch if distance to boundary < 𝑘th
closest.

Analysis

▶ Assume each leaf has bounded number of points.

▶ Best case: Θ(ℎ) → Θ(log 𝑛) if balanced

▶ Worst case: Θ(𝑛).
▶ We may be unable to rule out many of the branches.
▶ Can occur even if tree is balanced.
▶ Especially if query point far from data.

▶ Note: balancing is difficult, but possible.

Example of Worst Case
▶ NN Query: (20, 20)
▶ Closest point is (5, 9) at distance ≈ 19

is 𝑥 ≥ 2?

is 𝑦 ≥ 4?

(1, 3), (0,2) (0,8)

is 𝑦 ≥ 7?

(6,3) (5,9), (3, 10)

no

no yes

yes

no yes

Performance Degradation

▶ In small dimensions, NN lookup usually takes
Θ(log 𝑛).

▶ We’ll see performance degrades to Θ(𝑛) (brute
force) as dimensionality→∞.

▶ Curse of Dimensionality

Lecture 6 | Part 4

Constructing k-d Trees

Construction

▶ Given: a set of 𝑛 data points in ℝ𝑑

▶ Construct: a k-d tree containing these points.

Caveats

▶ There are many variations on k-d tree
construction.

▶ We’ll describe one popular approach.

▶ Assumption: offline construction.
▶ Have all of the data at once (no insert/delete).

Idea

▶ Starting with 𝑛 points, either:
▶ make internal node by splitting (𝑥 ≥ 𝜏?)
▶ make leaf node containing the points

▶ Apply this strategy recursively.

▶ Questions:
▶ Do we split, or do we make a leaf?
▶ If we split:

▶ What dimension to split on?
▶ What threshold to use?

Q1: Do we split?

▶ Take parameter 𝑀 (max leaf size).

▶ If 𝑛 < 𝑀, don’t split.

▶ Reason: For small 𝑛, brute force is actually faster
(less overhead).

Q2: Which dimension to split on?

▶ Choose dimension with largest spread.
▶ Difference between largest and smallest values.
▶ Calculated using only points in this subtree.

▶ Alternatively: round-robin. Split x, y, z, x, y, …

Q3: What threshold to use?

▶ Need threshold, 𝜏.

▶ Use median value in splitting dimension.
▶ Calculated using only points in this subtree.
▶ Guaranteed to produce balanced tree.

▶ Alternatively: randomly-selected pivot, or
median of random selection

𝑥

𝑦

(4, 2)

(1, 1)

(5, 2)

(1, 6)

(7, 7)

(8, 9)

(1, 5)

𝑥

𝑦

(1,1), (4,2), (5,2), (1,5), (1,6), (7,7), (8,9)

Set 𝑀 = 2, use median and spread for
splitting. We start with data:

x y

4 2
1 1
5 2
1 6
7 7
8 9
2 5

▶ Spread of 𝑥: 7

▶ Spread of 𝑦: 8

▶ Use 𝑦 as splitting dimension.

▶ Median of 𝑦: 5.

𝑦 ≥ 5

𝑥

𝑦

(4, 2)

(1, 1)

(5, 2)

(1, 6)

(7, 7)

(8, 9)

(1, 5)

𝑥

𝑦

is 𝑦 ≥ 5?

(1,1), (4,2), (5,2) (1,5), (1,6), (7,7), (8,9)

Set 𝑀 = 2, use median and spread for
splitting. We start with data:

x y

4 2
1 1
5 2
1 6
7 7
8 9
2 5

▶ Spread of 𝑥: 7

▶ Spread of 𝑦: 8

▶ Use 𝑦 as splitting dimension.

▶ Median of 𝑦: 5.

𝑦 ≥ 5

𝑥

𝑦

(4, 2)

(1, 1)

(5, 2)

(1, 6)

(7, 7)

(8, 9)

(1, 5)

𝑥

𝑦

is 𝑦 ≥ 5?

(1,1), (4,2), (5,2) (1,5), (1,6), (7,7), (8,9)

Recurse on left child. Data becomes:

x y

4 2
1 1
5 2

▶ Spread of 𝑥: 4

▶ Spread of 𝑦: 1

▶ Use 𝑥 as splitting dimension.

▶ Median of 𝑥: 4.

𝑦 ≥ 5

𝑥 ≥ 4

𝑥

𝑦

(4, 2)

(1, 1)

(5, 2)

(1, 6)

(7, 7)

(8, 9)

(1, 5)

𝑥

𝑦

is 𝑦 ≥ 5?

is 𝑥 ≥ 4?

(1,1) (4,2), (5,2)

(1,5), (1,6), (7,7), (8,9)

Recurse on left child. Data becomes:

x y

4 2
1 1
5 2

▶ Spread of 𝑥: 4

▶ Spread of 𝑦: 1

▶ Use 𝑥 as splitting dimension.

▶ Median of 𝑥: 4.

𝑦 ≥ 5

𝑥 ≥ 4

𝑥

𝑦

(4, 2)

(1, 1)

(5, 2)

(1, 6)

(7, 7)

(8, 9)

(1, 5)

𝑥

𝑦

is 𝑦 ≥ 5?

is 𝑥 ≥ 4?

(1,1) (4,2), (5,2)

(1,5), (1,6), (7,7), (8,9)

Recurse on children. Since size <= 𝑀, these
become leaf nodes.

𝑦 ≥ 5

𝑥 ≥ 4

𝑥

𝑦

(4, 2)

(1, 1)

(5, 2)

(1, 6)

(7, 7)

(8, 9)

(1, 5)

𝑥

𝑦

is 𝑦 ≥ 5?

is 𝑥 ≥ 4?

(1,1) (4,2), (5,2)

(1,5), (1,6), (7,7), (8,9)

Recurse on children. Since size <= 𝑀, these
become leaf nodes.

𝑦 ≥ 5

𝑥 ≥ 4

𝑥

𝑦

(4, 2)

(1, 1)

(5, 2)

(1, 6)

(7, 7)

(8, 9)

(1, 5)

𝑥

𝑦

is 𝑦 ≥ 5?

is 𝑥 ≥ 4?

(1,1) (4,2), (5,2)

(1,5), (1,6), (7,7), (8,9)

Unroll recursion, now recurse down right
side of tree. Data becomes:

x y

1 6
7 7
8 9
2 5

▶ Spread of 𝑥: 7

▶ Spread of 𝑦: 4

▶ Use 𝑥 as splitting dimension.

▶ Median of 𝑥: 7 (or 2).

𝑦 ≥ 5

𝑥 ≥ 4

𝑥 ≥ 7

𝑥

𝑦

(4, 2)

(1, 1)

(5, 2)

(1, 6)

(7, 7)

(8, 9)

(1, 5)

𝑥

𝑦

is 𝑦 ≥ 5?

is 𝑥 ≥ 4?

(1,1) (4,2), (5,2)

is 𝑥 ≥ 7?

(1,5), (1,6) (7,7), (8,9)

Unroll recursion, now recurse down right
side of tree. Data becomes:

x y

1 6
7 7
8 9
2 5

▶ Spread of 𝑥: 7

▶ Spread of 𝑦: 4

▶ Use 𝑥 as splitting dimension.

▶ Median of 𝑥: 7 (or 2).

𝑦 ≥ 5

𝑥 ≥ 4

𝑥 ≥ 7

𝑥

𝑦

(4, 2)

(1, 1)

(5, 2)

(1, 6)

(7, 7)

(8, 9)

(1, 5)

𝑥

𝑦

is 𝑦 ≥ 5?

is 𝑥 ≥ 4?

(1,1) (4,2), (5,2)

is 𝑥 ≥ 7?

(1,5), (1,6) (7,7), (8,9)

Make leaf nodes, since size ≤ 𝑀.

𝑦 ≥ 5

𝑥 ≥ 4

𝑥 ≥ 7

𝑥

𝑦

(4, 2)

(1, 1)

(5, 2)

(1, 6)

(7, 7)

(8, 9)

(1, 5)

𝑥

𝑦

is 𝑦 ≥ 5?

is 𝑥 ≥ 4?

(1,1) (4,2), (5,2)

is 𝑥 ≥ 7?

(1,5), (1,6) (7,7), (8,9)

Make leaf nodes, since size ≤ 𝑀.

𝑦 ≥ 5

𝑥 ≥ 4

𝑥 ≥ 7

𝑥

𝑦

(4, 2)

(1, 1)

(5, 2)

(1, 6)

(7, 7)

(8, 9)

(1, 5)

𝑥

𝑦

is 𝑦 ≥ 5?

is 𝑥 ≥ 4?

(1,1) (4,2), (5,2)

is 𝑥 ≥ 7?

(1,5), (1,6) (7,7), (8,9)

Tree complete!

def build_kd_tree(data, m=2):
if len(data) <= m:

return data

find the dimension with greatest spread
spread = data.max(axis=0) - data.min(axis=0)
splitting_dimension = np.argmax(spread)

find the median along this dimension
median = np.median(data[:, splitting_dimension])

separate the data into new left and right sets
note that this isn't the most efficient since it will
produce a copy... better to do an in-place partition
left_data = data[data[:, splitting_dimension] < median]
right_data = data[data[:, splitting_dimension] >= median]

left = build_kd_tree(left_data)
right = build_kd_tree(right_data)

return KDInternalNode(
left=left, right=right, threshold=median,
dimension=splitting_dimension

)

Analysis

▶ Θ(𝑘) to find median, perform copies, where 𝑘 is
number of points in subtree.

▶ Tree has Θ(log 𝑛) levels (since it is balanced).

▶ Total time:

𝑛⏟
level 1

+ (𝑛/2 + 𝑛/2)⏟
level 2

+ (𝑛/4 + 𝑛/4 + 𝑛/4 + 𝑛/4)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
level 3

+… = Θ(𝑛 log 𝑛)

Example

2 0 2 4 6 8
3

2

1

0

1

2

3

4

5

Example

2 0 2 4 6 8
3

2

1

0

1

2

3

4

5

Demo

▶ A demo implementation of k-d trees is available
at dsc190.com

http://dsc190.com

Lecture 6 | Part 5

Curse of Dimensionality

Performance Degradation

▶ Brute force NN search takes Θ(𝑛) time.

▶ If dimensionality is small, k-d trees take Θ(log 𝑛).
▶ Great speedup!

▶ As dimensionality grows, performance degrades.
▶ At worst, it is Θ(𝑛).
▶ Becomes just as bad as brute force!

▶ Why?

Explanation #1

𝑥

𝑦

(1, 3)

(0, 2)

(0, 8)

(6, 3)

(5, 9)

(3, 10)

Explanation #1

𝑥

𝑦

(1, 3)

(0, 2)

(0, 8)

(6, 3)

(5, 9)

(3, 10)

Explanation # 1

Main Idea

As 𝑑 grows, the number of neighboring cells that
we may need to check grows like 2𝑑.

Explanation #2

▶ We saw that if query point is far away, we cannot
rule out branches.

▶ The reason? Distance from query to NN is not
significantly different from distance between
query and other points.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Surprising Fact

▶ In high dimensions3, the ratio of the distance to
nearest neighbor and distance to furthest
neighbor→ 1.

3Under some assumptions on distribution of data.

Experiment

▶ Generate random 𝑑-dimensional query vector
from multivariate Gaussian.

▶ Generate 1000 𝑑-dimensional data points from
same Gaussian.

▶ Plot distribution of distances.

Experiment

0 5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3

0.4

0.5
d = 2

Experiment

0 5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3

0.4

0.5
d = 5

Experiment

0 5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3

0.4

0.5
d = 10

Experiment

0 5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3

0.4

0.5
d = 50

Experiment

0 5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3

0.4

0.5
d = 100

Experiment

0 5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3

0.4

0.5
d = 500

Experiment

▶ Notice: width doesn’t change, but center
increases.

▶ So min = max − 𝛿, with 𝛿 constant.

min
max = 1 −

𝛿
max

Explanation #2

▶ Every point in data set is approximately
equidistant to query point.

▶ Can’t rule out branches.

▶ Have to perform a brute force search.

Main Idea

In high dimensions, every data point is approxi-
mately equidistant to the query point, meaning we
can’t rule out most branches.

Main Idea

Not only are k-d trees inefficient in high dimen-
sions, Euclidean distance is lessmeaningful in high
dimensions, and therefore so is the concept of NN
search itself.

Lecture 6 | Part 6

Approximate Nearest Neighbors

Why, exactly?

▶ Why do we need the exact NN?

▶ Often something close would do.

▶ Especially if not confident in distance measure.
▶ As is the case in high dimensions.

▶ Maybe this can be done faster?

ANN

▶ Given: A set of points and a query point, 𝑝.

▶ Return: An approximate nearest neighbor.

k-D ANNs

▶ So far, our k-d trees find exact nearest neighbor.

▶ But there’s a very simple way to do ANN query.

▶ Idea: prune more aggressively.

Before
▶ Let 𝑑nn be distance from query point to best so far.

▶ Let 𝑑bound be distance from query point to boundary.

▶ Search branch only if 𝑑bound < 𝑑nn.

Now
▶ Take 𝛼 ≥ 1 as a parameter.

▶ Search branch only if 𝑑bound < 𝑑nn/𝛼.

▶ Idea: make it easier to toss out branch.

▶ If 𝛼 = 1; exact search.

▶ If 𝛼 > 1; approximate, faster as 𝛼 grows.

Theory

▶ Let 𝑞 be exact NN, let 𝑞ann
be that found by this
strategy.

▶ Then:

𝑑(𝑝, 𝑞ann) ≤ 𝛼 ⋅ 𝑑(𝑝, 𝑞)

𝑥

𝑦

(1, 3)

(0, 2)

(0, 8)

(6, 3)

(5, 9)

(3, 10)

𝑝

Next Time

▶ ANNs via Locality Sensitive Hashing.

