

Lecture 6 | Part 1

Today's Lecture

Nearest Neighbors

- Finding the closest data point to a query point is a common operation.
- In machine learning, at the core of the nearest neighbor classifier.

NN Classifier

NN Query

- **Given**: a data set *X* of *n* points in \mathbb{R}^d and a query point, $p \in \mathbb{R}^d$.
- **Return**: the point in *X* that is nearest¹ to *p*

¹In terms of Euclidean distance, though other distances can be considered.

Approach #1: Brute Force

Compute distance between p and every point x ∈ X, keep closest.

► Time: Θ(*nd*)

Intuitively...

...we can do better. We only need to look at region close to p.


```
def brute force nn search(data, p):
    """Find nearest neighbor.
    Parameters
    data : np.ndarray
       An n x d array of points.
    p : np.ndarrav
       A d-array representing the query point.
    Returns
    nn : np.ndarray
        The closest point.
    nn distance : float
        Distance to closest point.
    .....
    distances = np.sqrt(np.sum((data - p)**2, axis=1))
    ix_of_nn = np.argmin(distances)
   nn = data[ix of nn]
   nn distance = distances[ix of nn]
    return (nn, nn distance)
```

Approach #2

- Build a grid.
- ► To query NN, find cell containing *p*.
- Start search in *p*'s cell, move outwards.

Intuitively...

Problems

- How do we choose grid cell size?
 - Too big: cells contain a lot of points = brute force.
 - Too small: Most of the cells are empty.
 - "Just right" for one region might be too big/small for another region.
- Number of cells grows exponentially with dimension.

Today

- ▶ We'll refine the idea of a grid.
- Adapt cell placement/size to the data.
- Result: k-d trees.

k-d Trees

- Will speed up NN queries in low dimensions (<10) from O(n) to O(log n).
- But will be just as bad as brute force in high dimensions.

Lecture 6 | Part 2

k-d Trees

k-d Trees

- Binary search tree for multidimensional data.
- Now: structure & properties.
- Next section: how to query them.
- Next next section: how to construct them.

Internal Nodes

Internal nodes are threshold questions.

can be of form x ≥ τ? or y ≥ τ? in 2-d.
can be of form x ≥ τ? or y ≥ τ? or z ≥ τ? in 3-d.
etc.

Internal Nodes

A path forms a **conjunction**.

Leaf Nodes

Leaf nodes are (collections of) points.

Partitioning

Each internal node **splits** space.

k-d Trees in Python

from dataclasses import dataclass
from typing import Union, Optional
import numpy as np

@dataclass
class KDInternalNode:
 # the left and right children can be internal nodes
 # or numpy arrays of points (leaf nodes)
 left: Union['KDInternalNode', np.ndarray]
 right: Union['KDInternalNode', np.ndarray]

the threshold tau in the question
threshold: float

the dimension used in the question
dimension: int

Lecture 6 | Part 3

Queries on k-d Trees

Types of Queries

Standard query:
 Is (1, 5) in the tree?

Nearest neighbor query:

Return the nearest neighbor(s) of (1, 5).

Standard Queries

Is (6,3) in the tree? Is (1,5) in the tree?

Standard Queries

▶ Similar to BST query.

- Recursively choose left/right by answering question.
- Brute-force linear search on leaf (if needed).

Takes O(h) time, where h is height of the tree².

²Assuming each leaf has a bounded number of points.

Nearest Neighbor Queries

- Given query point p = (x, y), find nearest neighbor in tree.
- Can we just do a standard query?
 - Find cell that would contain (x, y).
 - Return closest neighbor within that cell.

No

► Example: *p* = (3, 3).

х

Main Idea

It is not always sufficient to only check the cell that *p* would be placed in. You may also need to check neighboring cells (which can be very far away in the tree).

Brute Force?

- This suggests we need to traverse the whole tree.
- But we can actually do much better.
- Intuitively, some branches can be ruled out (pruned).

Example

► Example: *p* = (5, 3).

Bounding Branches

- **Observation**: let d_{bound} be distance from *p* to the boundary.
- Then the closest a point in the other branch can be to p is d_{bound}
- If we search and find a point whose distance to p is less than d_{bound}, we do not need to search other branch.

Bounding Branches

To query NN of (x, y):

- Search right branch first if $x \ge t$, otherwise search left branch first.
- Let d_{nn} be the distance from p to the closest point found.
- Let d_{bound} be the distance from p to boundary.
- Search other branch only if $d_{\text{bound}} < d_{\text{nn}}$.

Apply this idea recursively.

Example

▶ NN Query: (5, 3)

Example

▶ NN Query: (3, 3)


```
def nn_query(node, p):
   if isinstance(node. np.ndarray):
        return brute force nn search(node, p)
    else:
        # find the most likelv branch
        if p[node.dimension] >= node.threshold:
            most likely branch. other branch = node.right. node.left
        else:
            most likely branch, other branch = node.left, node.right
        # compute distance to boundary
        distance to boundary = abs(p[node.dimension] - node.threshold)
        # find nn within most likely branch
        nn. nn distance = nn query(most likely branch. p)
        # check the other branch, but only if necessary
        if distance to boundary < nn distance:
            nn other. nn other distance = nn querv(other branch. p)
            # check if the nn within this branch is closer
            if nn other distance < nn distance:
                nn = nn other
                nn distance = nn other distance
```

```
return nn, nn_distance
```

k-NN Search

- Sometimes we want to find *k* nearest neighbors.
- Keep a max heap of best *k* so far.
- Check branch if distance to boundary < kth closest.

Analysis

- Assume each leaf has bounded number of points.
- ▶ Best case: $\Theta(h) \rightarrow \Theta(\log n)$ if balanced
- Worst case: $\Theta(n)$.
 - We may be unable to rule out many of the branches.
 - Can occur even if tree is balanced.
 - Especially if query point far from data.
- Note: balancing is difficult, but possible.

Example of Worst Case

▶ NN Query: (20, 20)

Closest point is (5,9) at distance ≈ 19

Performance Degradation

- In small dimensions, NN lookup usually takes
 Θ(log n).
- ▶ We'll see performance **degrades** to $\Theta(n)$ (brute force) as dimensionality $\rightarrow \infty$.
- Curse of Dimensionality

Lecture 6 | Part 4

Constructing k-d Trees

Construction

- **Given**: a set of *n* data points in \mathbb{R}^d
- **Construct**: a k-d tree containing these points.

Caveats

- There are many variations on k-d tree construction.
- We'll describe one popular approach.
- Assumption: offline construction.
 Have all of the data at once (no insert/delete).

Idea

Starting with n points, either: make internal node by splitting (x ≥ τ?) make leaf node containing the points

Apply this strategy recursively.

Questions:

- Do we split, or do we make a leaf?
- If we split:
 - What dimension to split on?
 - What threshold to use?

Q1: Do we split?

- ► Take parameter *M* (max leaf size).
- ▶ If *n* < *M*, don't split.
- Reason: For small n, brute force is actually faster (less overhead).

Q2: Which dimension to split on?

Choose dimension with largest spread.
 Difference between largest and smallest values.
 Calculated using only points in this subtree.

Alternatively: round-robin. Split x, y, z, x, y, ...

Q3: What threshold to use?

Need threshold, τ .

Use median value in splitting dimension.
 Calculated using only points in this subtree.
 Guaranteed to produce balanced tree.

Alternatively: randomly-selected pivot, or median of random selection

Set *M* = 2, use median and spread for splitting. We start with data:

4 2 1 1 5 2 1 6 7 7 8 9 2 5

- Spread of x: 7
- Spread of v: 8 ►
- Use y as splitting dimension. ►
- Median of y: 5. ►

Set *M* = 2, use median and spread for splitting. We start with data:

х	у
4	2
1	1
5	2
1	6
7	7
8	9
2	5

- Spread of *x*: 7
- Spread of y: 8
- Use y as splitting dimension.
- Median of y: 5.

Recurse on left child. Data becomes:

х	у
4	2
1	1
5	2

- Spread of *x*: 4
- Spread of y: 1
- Use x as splitting dimension.
- Median of *x*: 4.

Recurse on left child. Data becomes:

х	у
4	2
1	1
5	2

- Spread of *x*: 4
- Spread of y: 1
- Use x as splitting dimension.
- Median of *x*: 4.

x

Unroll recursion, now recurse down right side of tree. Data becomes:

х	у
1 7 8 2	6 7 9 5

- Spread of *x*: 7
- Spread of y: 4
- Use x as splitting dimension.
- Median of *x*: 7 (or 2).

Unroll recursion, now recurse down right side of tree. Data becomes:

х	у
1	6
7	7
8	9
2	5

- Spread of *x*: 7
- Spread of y: 4
- Use x as splitting dimension.
- Median of *x*: 7 (or 2).

Make leaf nodes, since size $\leq M$.

Make leaf nodes, since size $\leq M$.

Tree complete!


```
def build_kd_tree(data, m=2):
    if len(data) <= m:
        return data</pre>
```

```
# find the dimension with greatest spread
spread = data.max(axis=0) - data.min(axis=0)
splitting_dimension = np.argmax(spread)
```

```
# find the median along this dimension
median = np.median(data[:, splitting_dimension])
```

```
# separate the data into new left and right sets
# note that this isn't the most efficient since it will
# produce a copy... better to do an in-place partition
left_data = data[data[:, splitting_dimension] < median]
right_data = data[data[:, splitting_dimension] >= median]
```

```
left = build_kd_tree(left_data)
right = build_kd_tree(right_data)
```

```
return KDInternalNode(
    left=left, right=right, threshold=median,
    dimension=splitting_dimension
)
```

Analysis

- Θ(k) to find median, perform copies, where k is number of points in subtree.
- Tree has Θ(log n) levels (since it is balanced).
- Total time:

$$\underbrace{n}_{\text{level 1}} + \underbrace{(n/2 + n/2)}_{\text{level 2}} + \underbrace{(n/4 + n/4 + n/4 + n/4)}_{\text{level 3}} + \dots = \Theta(n \log n)$$

Example

Example

Demo

A demo implementation of k-d trees is available at dsc190.com

Lecture 6 | Part 5

Curse of Dimensionality

Performance Degradation

- Brute force NN search takes $\Theta(n)$ time.
- ▶ If dimensionality is small, k-d trees take Θ(log n).
 ▶ Great speedup!
- As dimensionality grows, performance degrades.
 At worst, it is O(n).
 - Becomes just as bad as brute force!

Main Idea

As *d* grows, the number of neighboring cells that we may need to check grows like 2^d .

- We saw that if query point is far away, we cannot rule out branches.
- The reason? Distance from query to NN is not significantly different from distance between query and other points.

Surprising Fact

In high dimensions³, the ratio of the distance to nearest neighbor and distance to furthest neighbor → 1.

³Under some assumptions on distribution of data.

Experiment

- Generate random d-dimensional query vector from multivariate Gaussian.
- Generate 1000 d-dimensional data points from same Gaussian.
- Plot distribution of distances.

Experiment

d = 2

Experiment

d = 5

- Notice: width doesn't change, but center increases.
- So min = max δ , with δ constant.

$$\frac{\min}{\max} = 1 - \frac{\delta}{\max}$$

Explanation #2

Every point in data set is approximately equidistant to query point.

- Can't rule out branches.
- Have to perform a brute force search.

Main Idea

In high dimensions, every data point is approximately equidistant to the query point, meaning we can't rule out most branches.

Main Idea

Not only are k-d trees **inefficient** in high dimensions, Euclidean distance is **less meaningful** in high dimensions, and therefore so is the concept of NN search itself.

Lecture 6 | Part 6

Approximate Nearest Neighbors

Why, exactly?

- Why do we need the exact NN?
- Often something close would do.
- Especially if not confident in distance measure.
 As is the case in high dimensions.
- Maybe this can be done faster?

ANN

Given: A set of points and a query point, *p*.

Return: An approximate nearest neighbor.

k-D ANNs

So far, our k-d trees find **exact** nearest neighbor.

- But there's a very simple way to do ANN query.
- Idea: prune more aggressively.

Before

- Let d_{nn} be distance from query point to best so far.
- Let d_{bound} be distance from query point to boundary.
- Search branch only if $d_{\text{bound}} < d_{\text{nn}}$.

Now

- ► Take $\alpha \ge 1$ as a parameter.
- Search branch only if $d_{\text{bound}} < d_{\text{nn}}/\alpha$.
- Idea: make it easier to toss out branch.
- ► If α = 1; exact search.
- If $\alpha > 1$; approximate, faster as α grows.

Theory

Let q be exact NN, let q_{ann} be that found by this strategy.

Then:

 $d(p,q_{\mathrm{ann}}) \leq \alpha \cdot d(p,q)$

Next Time

ANNs via Locality Sensitive Hashing.