

Lecture 2 | Part 1

Recap

Arrays vs. Linked Lists

- Last time, we reviewed two ways of storing sequential data: arrays and linked lists.
- Arrays support constant time access, but are slow to grow.
- **Linked lists** are fast to grow but slow to access.

Motivation

- Can we have the best of both worlds?
- \triangleright $\Theta(1)$ time access like an array.
- Θ(1) time append like a linked list.
- Yes! (sort of)

Lecture 2 | Part 2

Dynamic Arrays

Why are arrays slow to grow?

- Appending to an array requires:¹
 allocating a new chunk of memory; and
 copying the entire array to the new chunk.
- Thus each append takes Θ(k) time, where k is current number of elements stored.

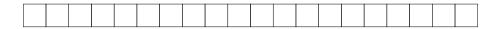
¹There are some subtleties here. See: https://youtu.be/5J6UlEdvDSk

The Idea

- Allocate a larger underlying array than initially needed.
 - Some "empty space" at end of array to "grow into".
- Only need to allocate more memory when we run out of empty space.

Physical Size vs. Logical Size

- Our array will have two "sizes".
- Physical size: the size of the underlying array.
 I.e., the number of "slots" that have been allocated.
- Logical size: the number of elements currently being stored.
 - ▶ I.e., the number of "slots" being used.



Appending

- If there is empty space (logical < physical), just insert the element into first empty slot in Θ(1) time (fast).</p>
- If there is no empty space (logical = physical), grow the underlying array in Θ(k) time, then insert the element (slow).

Intuition

- Most appends are fast: Θ(1) time.
- Some appends are slow: $\Theta(k)$ time.
- If slow appends are rare enough, the "typical" time of an append will be close to Θ(1).

Dynamic Arrays

- This data structure is called a dynamic array.
- Fast access (it's just an array), and fast appends (most of the time).
- The big remaining question: how much do we grow the array when we run out of space?
- The right strategy makes all the difference.

"Typical" Time

- Our goal is to design a strategy to minimize the "typical" time of an append.
- What do we mean by "typical", exactly?
- Up next, a new way of measuring "typical" time: amortized time complexity.

Lecture 2 | Part 3

Amortized Analysis

Goal

- Measure the "typical" time taken by an operation:
 most of the time, the operation is fast;
 - but sometimes, the operation is slow.
- Idea: "spread" the cost of the slow operations over the many fast operations.

Amortization

Amortization means spreading out the cost of something over time.

- E.g., buying a car:
 - **Up-front cost**: \$30,000
 - Amortized cost over 60 months: \$500/month

Example: UCSD Parking

- Parking costs \$7 per day (for faculty).
- Every 100 days, you forget to pay and get a \$80 ticket.
- The "amortized cost" of parking is:

$$\frac{\text{total cost}}{\text{total days}} = \frac{\$700 + \$80}{100} = \$7.80$$

Amortized Analysis

- Amortized analysis is a way of measuring the "typical" time of an operation in a sequence.
- Idea: spread the cost of the slow operations over the many fast operations.
- Approach: compute total time of operations, divide by number of operations.²

²Related to average case analysis, but not quite the same.

Computing Amortized Time

The amortized time of n operations is:

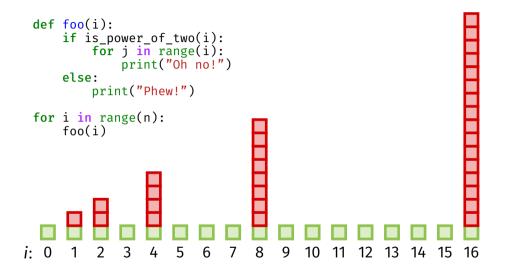
$$T_{\text{amort}}(n) = \frac{\text{total time taken by all operations}}{n}$$

An equivalent strategy is to separately analyze the "fast" and "slow" operations (ops):

$$T_{\text{amort}}(n) = \frac{(\text{total time of fast ops}) + (\text{total time of slow ops})}{n}$$

```
def foo(i):
    if is power of two(i):
        for j in range(i):
            print("Oh no!")
    else:
        print("Phew!")
for i in range(n):
```

```
foo(i)
```



```
def foo(i):
    if is_power_of_two(i):
        for j in range(i):
            print("Oh no!")
    else:
            print("Phew!")
for i in range(n):
    foo(i)
```

Start by computing total time taken by "slow" calls.

slow call #	# iters.
1	
2	
3	
:	:
k	

```
def foo(i):
    if is_power_of_two(i):
        for j in range(i):
            print("Oh no!")
    else:
            print("Phew!")
for i in range(n):
    foo(i)
```

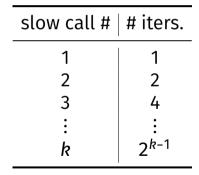
Start by computing total time taken by "slow" calls.

slow call # # iters.	
1	1
2	2
3	4
:	:
k	2 ^{k-1}

```
def foo(i):
    if is_power_of_two(i):
        for j in range(i):
            print("Oh no!")
    else:
            print("Phew!")
for i in range(n):
    foo(i)
```

Exercise

Out of the *n* calls to foo, (roughly) how many are **slow**?



- The total time taken over all slow calls is:
 - $1+2+4+...+2^{k-1}+...+2^{\log_2(n)-1}$
- ► This is a geometric sum.

Recall: Geometric Sum

A geometric sum is a sum of the form:

$$1 + r + r^{2} + \dots + r^{k-1} + \dots + r^{n} = \sum_{k=0}^{n} r^{k}$$

There is a formula for this sum:

$$\sum_{k=0}^{n} r^{k} = \frac{1 - r^{n+1}}{1 - r}$$

Recall our geometric sum for the total time taken by the slow calls:

1 + 2 + 4 + ... + 2^{*k*-1} + ... + 2^{log₂(*n*)-1} =
$$\sum_{k=0}^{log_2(n)-1} 2^k$$

Using the formula on the previous slide with r = 2 and n = log₂(n) - 1, we get:

$$\sum_{k=0}^{\log_2(n)-1} 2^k = \frac{1-2^{\log_2(n)}}{1-2} = 2^{\log_2(n)} - 1 = n - 1 = \Theta(n)$$

```
def foo(i):
    if is_power_of_two(i):
        for j in range(i):
            print("Oh no!")
    else:
            print("Phew!")
```

for i in range(n):
 foo(i)

The total time taken by the slow calls is Θ(n).

```
def foo(i):
    if is_power_of_two(i):
        for j in range(i):
            print("Oh no!")
    else:
            print("Phew!")
for i in range(n):
    foo(i)
```

Exercise

What is the total time taken by all of the **fast** calls to foo?

```
def foo(i):
    if is_power_of_two(i):
        for j in range(i):
            print("Oh no!")
    else:
        print("Phew!")
for i in range(n):
    foo(i)
```

- Out of the n calls to foo, O(log₂ n) calls are "slow".
- So $\Theta(n \log n) = \Theta(n)$ calls are "fast".
- Each fast call takes Θ(1) time.
- Total time taken by fast calls: $\Theta(n) \times \Theta(1) = \Theta(n)$.

Amortized time:

$$T_{\text{amort}}(n) = \frac{(\text{total time of fast calls}) + (\text{total time of slow calls})}{n}$$
$$= \frac{\Theta(n) + \Theta(n)}{n}$$
$$= \Theta(1)$$

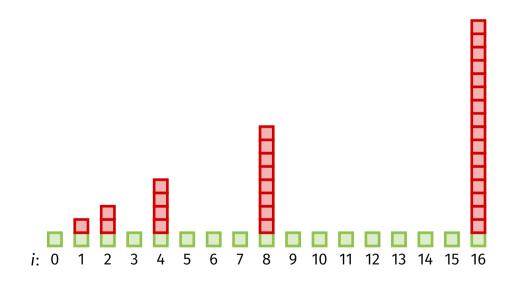
The amortized time of foo is Θ(1) per call.

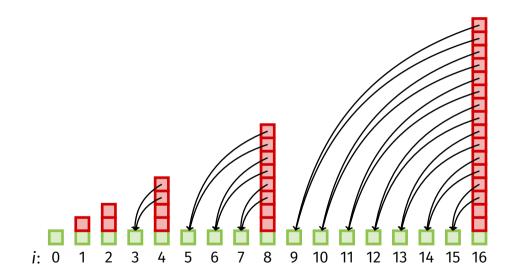
In other words...

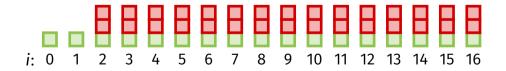
- Some calls to foo are fast, taking $\Theta(1)$.
- Some calls to foo are slow, taking $\Theta(n)$.
- But the slow calls are rare enough that the amortized ("typical") cost per call is Θ(1).

Another View

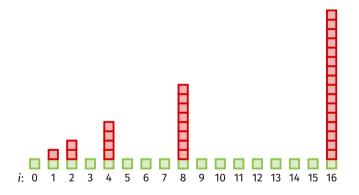
- The cost of the slow iterations can be "spread over" the previous fast calls.
- This works because the slow calls are rare enough.







Observation

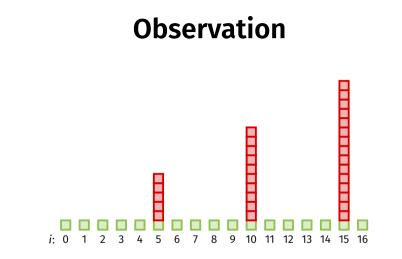


- Observation: the slow calls are get slower, but they also get rarer.
 - Twice as bad, but half as frequent.
 - Their increased cost is spread over a larger gap.

On the other hand...

```
def bar(i):
    if is_divisible_by_five(i):
        for j in range(i):
            print("Oh no!")
    else:
        print("Phew!")
```

```
for i in range(n):
    foo(i)
```



Observation: the slow calls are get slower, but are not getting rarer.

Will lead to $\Theta(n)$ amortized cost, instead of $\Theta(1)$.

Lecture 2 | Part 4

Growth Strategies for Dynamic Arrays

Amortized Analysis of Dynamic Arrays

- What is the amortized cost of append on a dynamic array?
- It depends on the growth strategy.

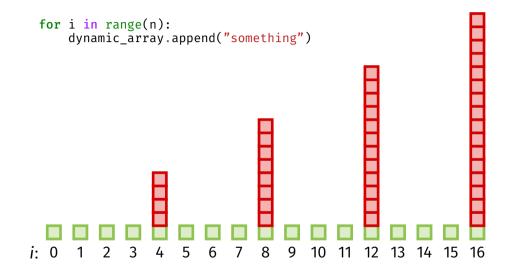
Attempt #1: Linear Growth

- Initially allocate S slots.
- When we run out, grow physical size to 2S slots.
- When we run out again, physical size to 3S.

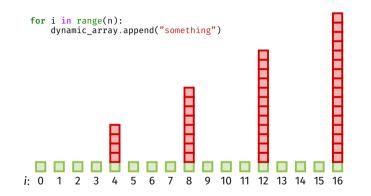
Example

Analysis

- Every Sth append is slow, taking time Θ(k), where k is the number of elements stored.
- All other appends are **fast**, taking time $\Theta(1)$.



Attempt #1: Linear Growth



- The slow calls are getting worse (linearly), but are not getting rarer.
 - This will lead to a linear amortized cost.

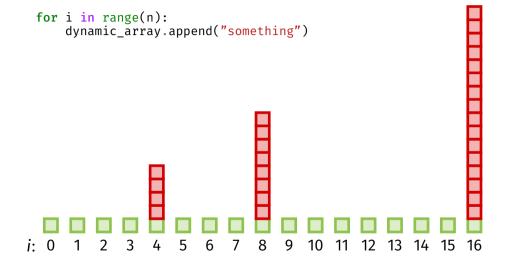
Attempt #2: Geometric Growth

Initially allocate S slots.

▶ When we run out, *double* the physical size.

When we run out again, double it again.

Example



Informal Analysis

- The slow calls are getting slower (geometrically), but are getting rarer!
- This will lead to an amortized cost of $\Theta(1)$.

In general...

- We have used a **growth factor** of $\gamma = 2$.
- In general, we can use any $\gamma > 1$.
- Next up: a formal analysis of the amortized cost for a general γ.

Lecture 2 | Part 5

Formal Analysis of Dynamic Arrays

Amortized Time Complexity

The amortized time for an append is:

$$T_{\text{amort}}(n) = \frac{\text{total time for } n \text{ appends}}{n}$$

• We'll see that $T_{amort}(n) = \Theta(1)$ when geometric resizing is used with any growth factor $\gamma > 1$.

Amortized Analysis

total time for *n* appends

=

total time for **non-growing** appends

+

total time for **growing** appends

- Want to calculate time taken by growing appends.
- First: how many appends caused a resize?
 - \triangleright *β*: initial physical size
 - γ: growth factor

Suppose initial physical size is β = 512, and γ = 2

Resizes occur on append #:

512, 1024, 2048, 4096, ...

In general, resizes occur on append #:

 $\beta\gamma^0, \beta\gamma^1, \beta\gamma^2, \beta\gamma^3, \dots$

- In a sequence of n appends, how many caused the physical size to grow?
- Simplification: Assume *n* is such that *n*th append caused a resize. Then, for some $x \in \{0, 1, 2, ...\}$:

$$n = \beta \gamma^{x}$$

If x = 0 there was 1 resize; if x = 1 there were 2; etc.

Solving for x:

$$x = \log_{\gamma} \frac{n}{\beta}$$

• Check: without assumption, $x = \lfloor \log_y \frac{n}{\beta} \rfloor$

Number of resizes is $\lfloor \log_{\gamma} \frac{n}{\beta} \rfloor + 1$

Number of resizes is $\lfloor \log_{\gamma} \frac{n}{\beta} \rfloor + 1$

- Check with γ = 2, β = 512, n = 400
 Correct # of resizes: 0
- Check with γ = 2, β = 512, n = 1100
 Correct # of resizes: 2

- How much time was taken across all appends that caused resizes?
- Assumption: resizing an array with physical size k takes time ck = Θ(k).
 - c is a constant that depends on γ.

- Time for first resize: $c\beta$.
- Time for second resize: $c\gamma\beta$.
- Time for third resize: $c\gamma^2\beta$.
- Time for *j*th resize: $c\gamma^{j-1}\beta$.
- This is a **geometric progression**.

- Time for *j*th resize: $c\gamma^{j-1}\beta$.
- Suppose there are *r* resizes.
- ► Total time:

$$c\beta\sum_{j=1}^r\gamma^{j-1}=c\beta\sum_{j=0}^r\gamma^j$$

Recall: Geometric Sum

From before:

$$\sum_{k=0}^{n} r^{k} = \frac{1 - r^{n+1}}{1 - r}$$

► Total time:

$$c\beta \sum_{j=0}^{r} \gamma^{j} = c\beta \frac{1-\gamma^{r+1}}{1-\gamma}$$

- Remember: in *n* appends there are $r = \lfloor \log_{\gamma} \frac{n}{\beta} \rfloor + 1$ resizes.
- ► Total time:

$$c\beta \frac{1-\gamma^{r+1}}{1-\gamma} = c\beta \frac{1-\gamma^{\lfloor \log_{\gamma} \frac{n}{\beta} \rfloor + 2}}{1-\gamma}$$
$$= \Theta(n)$$

Amortized Analysis

total time for *n* appends

=

total time for **non-growing** appends

- + O(x) to tall time for
- $\Theta(n) \leftarrow \text{total time for growing appends}$

In a sequence of *n* appends, how many are non-growing?

$$n - \left(\lfloor \log_{\gamma} \frac{n}{\beta} \rfloor + 1 \right) = \Theta(n)$$

- Time for one such append: $\Theta(1)$.
- Total time: $\Theta(n) \times \Theta(1) = \Theta(n)$.

Amortized Analysis

total time for *n* appends

=
 Θ(n) ← total time for non-growing appends
 +
 Θ(n) ← total time for growing appends

Amortized Time Complexity

The amortized time for an append is:

$$T_{\text{amort}}(n) = \frac{\text{total time for } n \text{ appends}}{n}$$
$$= \frac{\Theta(n)}{n}$$
$$= \Theta(1)$$

Dynamic Array Time Complexities

- Retrieve kth element: $\Theta(1)$
- Append/pop element at end:
 - Θ(1) best case
 - $\Theta(n)$ worst case (where n = current size)
 - Θ(1) amortized
- Insert/remove in middle: O(n)
 - May or may not need resize, still *O*(*n*)!

Lecture 2 | Part 6

Practicalities

Advantages

- Great cache performance (it's an array).
- Fast access.
- Don't need to know size in advance of allocation.

Downsides

- ▶ Wasted memory.
- Expensive deletion in middle.

Implementations

- Python: list
- C++: std::vector
- Java: ArrayList

(notebook posted on dsc190.com)

Exercise

Why do we need np.array? Python's list is a dynamic array, isn't that better?

In defense of np.array

Memory savings are one reason.

Bigger reason: using Python's list to store numbers does not have good cache performance.

