
Lecture 2 | Part 1

Recap

Arrays vs. Linked Lists

▶ Last time, we reviewed two ways of storing
sequential data: arrays and linked lists.

▶ Arrays support constant time access, but are
slow to grow.

▶ Linked lists are fast to grow but slow to access.

Motivation

▶ Can we have the best of both worlds?

▶ Θ(1) time access like an array.

▶ Θ(1) time append like a linked list.

▶ Yes! (sort of)

Lecture 2 | Part 2

Dynamic Arrays

Why are arrays slow to grow?

▶ Appending to an array requires:1
1. allocating a new chunk of memory; and
2. copying the entire array to the new chunk.

▶ Thus each append takes Θ(𝑘) time, where 𝑘 is
current number of elements stored.

1There are some subtleties here. See: https://youtu.be/5J6UlEdvDSk

https://youtu.be/5J6UlEdvDSk

The Idea

▶ Allocate a larger underlying array than initially
needed.
▶ Some “empty space” at end of array to “grow into”.

▶ Only need to allocate more memory when we run
out of empty space.

Physical Size vs. Logical Size

▶ Our array will have two “sizes”.

▶ Physical size: the size of the underlying array.
▶ I.e., the number of “slots” that have been allocated.

▶ Logical size: the number of elements currently
being stored.
▶ I.e., the number of “slots” being used.

Appending

▶ If there is empty space (logical < physical), just
insert the element into first empty slot in Θ(1)
time (fast).

▶ If there is no empty space (logical = physical),
grow the underlying array in Θ(𝑘) time, then
insert the element (slow).

Intuition

▶ Most appends are fast: Θ(1) time.

▶ Some appends are slow: Θ(𝑘) time.

▶ If slow appends are rare enough, the “typical”
time of an append will be close to Θ(1).

Dynamic Arrays

▶ This data structure is called a dynamic array.

▶ Fast access (it’s just an array), and fast appends
(most of the time).

▶ The big remaining question: how much do we
grow the array when we run out of space?

▶ The right strategy makes all the difference.

“Typical” Time

▶ Our goal is to design a strategy to minimize the
“typical” time of an append.

▶ What do we mean by “typical”, exactly?

▶ Up next, a new way of measuring “typical” time:
amortized time complexity.

Lecture 2 | Part 3

Amortized Analysis

Goal

▶ Measure the “typical” time taken by an operation:
▶ most of the time, the operation is fast;
▶ but sometimes, the operation is slow.

▶ Idea: “spread” the cost of the slow operations
over the many fast operations.

Amortization

▶ Amortization means spreading out the cost of
something over time.

▶ E.g., buying a car:
▶ Up-front cost: $30,000
▶ Amortized cost over 60 months:
$500/month

Example: UCSD Parking

▶ Parking costs $7 per day (for faculty).

▶ Every 100 days, you forget to pay and get a $80
ticket.

▶ The “amortized cost” of parking is:

total cost
total days =

$700 + $80
100 = $7.80

Amortized Analysis

▶ Amortized analysis is a way of measuring the
“typical” time of an operation in a sequence.

▶ Idea: spread the cost of the slow operations over
the many fast operations.

▶ Approach: compute total time of operations,
divide by number of operations.2

2Related to average case analysis, but not quite the same.

Computing Amortized Time

▶ The amortized time of 𝑛 operations is:

𝑇amort(𝑛) =
total time taken by all operations

𝑛

▶ An equivalent strategy is to separately analyze
the “fast” and “slow” operations (ops):

𝑇amort(𝑛) =
(total time of fast ops) + (total time of slow ops)

𝑛

Example: foo

def foo(i):
if is_power_of_two(i):

for j in range(i):
print(”Oh no!”)

else:
print(”Phew!”)

for i in range(n):
foo(i)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16𝑖:

def foo(i):
if is_power_of_two(i):

for j in range(i):
print(”Oh no!”)

else:
print(”Phew!”)

for i in range(n):
foo(i)

Example: foo

def foo(i):
if is_power_of_two(i):

for j in range(i):
print(”Oh no!”)

else:
print(”Phew!”)

for i in range(n):
foo(i)

▶ Start by computing total
time taken by “slow” calls.

slow call # # iters.

1
2
3
⋮ ⋮
𝑘

Example: foo

def foo(i):
if is_power_of_two(i):

for j in range(i):
print(”Oh no!”)

else:
print(”Phew!”)

for i in range(n):
foo(i)

▶ Start by computing total
time taken by “slow” calls.

slow call # # iters.

1 1
2 2
3 4
⋮ ⋮
𝑘 2𝑘−1

def foo(i):
if is_power_of_two(i):

for j in range(i):
print(”Oh no!”)

else:
print(”Phew!”)

for i in range(n):
foo(i)

Exercise

Out of the 𝑛 calls to foo, (roughly) how many are
slow?

Example: foo

slow call # # iters.

1 1
2 2
3 4
⋮ ⋮
𝑘 2𝑘−1

▶ The total time taken over
all slow calls is:

1+2+4+…+2𝑘−1+…+2log2(𝑛)−1

▶ This is a geometric sum.

Recall: Geometric Sum

▶ A geometric sum is a sum of the form:

1 + 𝑟 + 𝑟2 + … + 𝑟𝑘−1 + … + 𝑟𝑛 =
𝑛

∑
𝑘=0

𝑟𝑘

▶ There is a formula for this sum:
𝑛

∑
𝑘=0

𝑟𝑘 = 1 − 𝑟
𝑛+1

1 − 𝑟

Example: foo
▶ Recall our geometric sum for the total time
taken by the slow calls:

1 + 2 + 4 + … + 2𝑘−1 + … + 2log2(𝑛)−1 =
log2(𝑛)−1

∑
𝑘=0

2𝑘

▶ Using the formula on the previous slide with
𝑟 = 2 and 𝑛 = log2(𝑛) − 1, we get:
log2(𝑛)−1

∑
𝑘=0

2𝑘 = 1 − 2
log2(𝑛)

1 − 2 = 2log2(𝑛) − 1 = 𝑛 − 1 = Θ(𝑛)

Example: foo

def foo(i):
if is_power_of_two(i):

for j in range(i):
print(”Oh no!”)

else:
print(”Phew!”)

for i in range(n):
foo(i)

▶ The total time taken by
the slow calls is Θ(𝑛).

def foo(i):
if is_power_of_two(i):

for j in range(i):
print(”Oh no!”)

else:
print(”Phew!”)

for i in range(n):
foo(i)

Exercise

What is the total time taken by all of the fast calls
to foo?

Example: foo

def foo(i):
if is_power_of_two(i):

for j in range(i):
print(”Oh no!”)

else:
print(”Phew!”)

for i in range(n):
foo(i)

▶ Out of the 𝑛 calls to foo,
Θ(log2 𝑛) calls are “slow”.

▶ So Θ(𝑛 − log 𝑛) = Θ(𝑛) calls
are “fast”.

▶ Each fast call takes Θ(1)
time.

▶ Total time taken by fast
calls: Θ(𝑛) × Θ(1) = Θ(𝑛).

Example: foo

▶ Amortized time:

𝑇amort(𝑛) =
(total time of fast calls) + (total time of slow calls)

𝑛

= Θ(𝑛) + Θ(𝑛)𝑛
= Θ(1)

▶ The amortized time of foo is Θ(1) per call.

In other words...

▶ Some calls to foo are fast, taking Θ(1).

▶ Some calls to foo are slow, taking Θ(𝑛).

▶ But the slow calls are rare enough that the
amortized (“typical”) cost per call is Θ(1).

Another View

▶ The cost of the slow iterations can be “spread
over” the previous fast calls.

▶ This works because the slow calls are rare
enough.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16𝑖:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16𝑖:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16𝑖:

Observation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16𝑖:

▶ Observation: the slow calls are get slower, but
they also get rarer.
▶ Twice as bad, but half as frequent.
▶ Their increased cost is spread over a larger gap.

On the other hand...

def bar(i):
if is_divisible_by_five(i):

for j in range(i):
print(”Oh no!”)

else:
print(”Phew!”)

for i in range(n):
foo(i)

Observation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16𝑖:

▶ Observation: the slow calls are get slower, but
are not getting rarer.
▶ Will lead to Θ(𝑛) amortized cost, instead of Θ(1).

Lecture 2 | Part 4

Growth Strategies for Dynamic Arrays

Amortized Analysis of Dynamic
Arrays

▶ What is the amortized cost of append on a
dynamic array?

▶ It depends on the growth strategy.

Attempt #1: Linear Growth

▶ Initially allocate 𝑆 slots.

▶ When we run out, grow physical size to 2𝑆 slots.

▶ When we run out again, physical size to 3𝑆.

▶ etc.

Example

Analysis

▶ Every 𝑆th append is slow, taking time Θ(𝑘), where
𝑘 is the number of elements stored.

▶ All other appends are fast, taking time Θ(1).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16𝑖:

for i in range(n):
dynamic_array.append(”something”)

Attempt #1: Linear Growth

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16𝑖:

for i in range(n):
dynamic_array.append(”something”)

▶ The slow calls are getting worse (linearly), but
are not getting rarer.
▶ This will lead to a linear amortized cost.

Attempt #2: Geometric Growth

▶ Initially allocate 𝑆 slots.

▶ When we run out, double the physical size.

▶ When we run out again, double it again.

▶ etc.

Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16𝑖:

for i in range(n):
dynamic_array.append(”something”)

Informal Analysis

▶ The slow calls are getting slower (geometrically),
but are getting rarer!

▶ This will lead to an amortized cost of Θ(1).

In general...

▶ We have used a growth factor of 𝛾 = 2.

▶ In general, we can use any 𝛾 > 1.

▶ Next up: a formal analysis of the amortized cost
for a general 𝛾.

Lecture 2 | Part 5

Formal Analysis of Dynamic Arrays

Amortized Time Complexity

▶ The amortized time for an append is:

𝑇amort(𝑛) =
total time for 𝑛 appends

𝑛

▶ We’ll see that 𝑇amort(𝑛) = Θ(1) when geometric
resizing is used with any growth factor 𝛾 > 1.

Amortized Analysis

total time for 𝑛 appends
=
total time for non-growing appends
+
total time for growing appends

Counting Growing Appends

▶ Want to calculate time taken by growing
appends.

▶ First: how many appends caused a resize?
▶ 𝛽: initial physical size
▶ 𝛾: growth factor

Counting Growing Appends

▶ Suppose initial physical size is 𝛽 = 512, and 𝛾 = 2

▶ Resizes occur on append #:

512, 1024, 2048, 4096,…

▶ In general, resizes occur on append #:

𝛽𝛾0, 𝛽𝛾1, 𝛽𝛾2, 𝛽𝛾3, …

Counting Growing Appends

▶ In a sequence of 𝑛 appends, how many caused
the physical size to grow?

▶ Simplification: Assume 𝑛 is such that 𝑛th append
caused a resize. Then, for some 𝑥 ∈ {0, 1, 2, …}:

𝑛 = 𝛽𝛾𝑥

▶ If 𝑥 = 0 there was 1 resize; if 𝑥 = 1 there were 2;
etc.

Counting Growing Appends

▶ Solving for 𝑥:
𝑥 = log𝛾

𝑛
𝛽

▶ Check: without assumption, 𝑥 = ⌊log𝛾
𝑛
𝛽⌋

▶ Number of resizes is ⌊log𝛾
𝑛
𝛽⌋ + 1

Counting Growing Appends

▶ Number of resizes is ⌊log𝛾
𝑛
𝛽⌋ + 1

▶ Check with 𝛾 = 2, 𝛽 = 512, 𝑛 = 400
▶ Correct # of resizes: 0

▶ Check with 𝛾 = 2, 𝛽 = 512, 𝑛 = 1100
▶ Correct # of resizes: 2

Time of Growing Appends

▶ How much time was taken across all appends
that caused resizes?

▶ Assumption: resizing an array with physical size 𝑘
takes time 𝑐𝑘 = Θ(𝑘).
▶ 𝑐 is a constant that depends on 𝛾.

Time of Growing Appends

▶ Time for first resize: 𝑐𝛽.

▶ Time for second resize: 𝑐𝛾𝛽.

▶ Time for third resize: 𝑐𝛾2𝛽.

▶ Time for 𝑗th resize: 𝑐𝛾𝑗−1𝛽.

▶ This is a geometric progression.

Time of Growing Appends

▶ Time for 𝑗th resize: 𝑐𝛾𝑗−1𝛽.

▶ Suppose there are 𝑟 resizes.

▶ Total time:

𝑐𝛽
𝑟

∑
𝑗=1
𝛾𝑗−1 = 𝑐𝛽

𝑟

∑
𝑗=0
𝛾𝑗

Recall: Geometric Sum

▶ From before: 𝑛

∑
𝑘=0

𝑟𝑘 = 1 − 𝑟
𝑛+1

1 − 𝑟

Time of Growing Appends

▶ Total time:

𝑐𝛽
𝑟

∑
𝑗=0
𝛾𝑗 = 𝑐𝛽1 − 𝛾

𝑟+1

1 − 𝛾

Time of Growing Appends

▶ Remember: in 𝑛 appends there are 𝑟 = ⌊log𝛾
𝑛
𝛽⌋ + 1

resizes.

▶ Total time:

𝑐𝛽1 − 𝛾
𝑟+1

1 − 𝛾 = 𝑐𝛽1 − 𝛾
⌊log𝛾

𝑛
𝛽 ⌋+2

1 − 𝛾
= Θ(𝑛)

Amortized Analysis

total time for 𝑛 appends
=
total time for non-growing appends
+
Θ(𝑛) ← total time for growing appends

Time of Non-Growing Appends

▶ In a sequence of 𝑛 appends, how many are
non-growing?

𝑛 − (⌊log𝛾
𝑛
𝛽⌋ + 1) = Θ(𝑛)

▶ Time for one such append: Θ(1).

▶ Total time: Θ(𝑛) × Θ(1) = Θ(𝑛).

Amortized Analysis

total time for 𝑛 appends
=
Θ(𝑛) ← total time for non-growing appends
+
Θ(𝑛) ← total time for growing appends

Amortized Time Complexity

▶ The amortized time for an append is:

𝑇amort(𝑛) =
total time for 𝑛 appends

𝑛
= Θ(𝑛)𝑛

= Θ(1)

Dynamic Array Time Complexities

▶ Retrieve 𝑘th element: Θ(1)
▶ Append/pop element at end:

▶ Θ(1) best case
▶ Θ(𝑛) worst case (where 𝑛 = current size)
▶ Θ(1) amortized

▶ Insert/remove in middle: 𝑂(𝑛)
▶ May or may not need resize, still 𝑂(𝑛)!

Lecture 2 | Part 6

Practicalities

Advantages

▶ Great cache performance (it’s an array).

▶ Fast access.

▶ Don’t need to know size in advance of allocation.

Downsides

▶ Wasted memory.

▶ Expensive deletion in middle.

Implementations

▶ Python: list

▶ C++: std::vector

▶ Java: ArrayList

(notebook posted on dsc190.com)

http://dsc190.com

Exercise

Why do we need np.array? Python’s list is a dy-
namic array, isn’t that better?

In defense of np.array

▶ Memory savings are one reason.

▶ Bigger reason: using Python’s list to store
numbers does not have good cache performance.

