Arrays vs. Linked Lists

- Last time, we reviewed two ways of storing sequential data: arrays and linked lists.
- Arrays support constant time access, but are slow to grow.
- Linked lists are fast to grow but slow to access.

Motivation

- Can we have the best of both worlds?
- $\Theta(1)$ time access like an array.
- $\Theta(1)$ time append like a linked list.
- Yes! (sort of)

DSC 190 Lecture 2 | Part

Why are arrays slow to grow?

- Appending to an array requires: ${ }^{1}$

1. allocating a new chunk of memory; and
2. copying the entire array to the new chunk.

- Thus each append takes $\Theta(k)$ time, where k is current number of elements stored.
\square

The Idea

- Allocate a larger underlying array than initially needed.
- Some "empty space" at end of array to "grow into".
- Only need to allocate more memory when we run out of empty space.

Physical Size vs. Logical Size

- Our array will have two "sizes".
- Physical size: the size of the underlying array.
- I.e., the number of "slots" that have been allocated.
- Logical size: the number of elements currently being stored.
- l.e., the number of "slots" being used.
\square

Appending

- If there is empty space (logical < physical), just insert the element into first empty slot in Θ (1) time (fast).
- If there is no empty space (logical = physical), grow the underlying array in $\Theta(k)$ time, then insert the element (slow).
\square

Intuition

- Most appends are fast: $\Theta(1)$ time.
- Some appends are slow: $\Theta(k)$ time.
- If slow appends are rare enough, the "typical" time of an append will be close to $\Theta(1)$.

Dynamic Arrays

- This data structure is called a dynamic array.
- Fast access (it's just an array), and fast appends (most of the time).
- The big remaining question: how much do we grow the array when we run out of space?
- The right strategy makes all the difference.

"Typical" Time

- Our goal is to design a strategy to minimize the "typical" time of an append.
- What do we mean by "typical", exactly?
- Up next, a new way of measuring "typical" time: amortized time complexity.

DSC 190 Lecture $2 \mid$ Part 3 mortized Analysis

Goal

- Measure the "typical" time taken by an operation:
- most of the time, the operation is fast;
- but sometimes, the operation is slow.
- Idea: "spread" the cost of the slow operations over the many fast operations.

Amortization

- Amortization means spreading out the cost of something over time.
- E.g., buying a car:
- Up-front cost: \$30,000
- Amortized cost over 60 months: \$500/month

Example: UCSD Parking

- Parking costs $\$ 7$ per day (for faculty).
- Every 100 days, you forget to pay and get a $\$ 80$ ticket.
- The "amortized cost" of parking is:

$$
\frac{\text { total cost }}{\text { total days }}=\frac{\$ 700+\$ 80}{100}=\$ 7.80
$$

Amortized Analysis

- Amortized analysis is a way of measuring the "typical" time of an operation in a sequence.
- Idea: spread the cost of the slow operations over the many fast operations.
- Approach: compute total time of operations, divide by number of operations. ${ }^{2}$
${ }^{2}$ Related to average case analysis, but not quite the same.

Computing Amortized Time

- The amortized time of n operations is:

$$
T_{\text {amort }}(n)=\frac{\text { total time taken by all operations }}{n}
$$

- An equivalent strategy is to separately analyze the "fast" and "slow" operations (ops):

$$
T_{\text {amort }}(n)=\frac{(\text { total time of fast ops })+\text { (total time of slow ops) }}{n}
$$

Example: foo

def foo(i):
if is_power_of_two(i):
for j in range(i): print("Oh no!")
else:
print("Phew!")
for i in range(n): foo(i)

```
def foo(i):
        if is_power_of_two(i):
            for j in rānge(i):
        print("Oh no!")
        else:
            print("Phew!")
for i in range(n):
        foo(i)
```


Example: foo

```
def foo(i):
        if is_power_of_two(i):
        for j in ränge(i):
        print("Oh no!")
    else:
        print("Phew!")
for i in range(n):
        foo(i)
```

- Start by computing total time taken by "slow" calls.

slow call \#	\# iters.
1	
2	
3	
\vdots	\vdots
k	

Example: foo

```
def foo(i):
    if is_power_of_two(i):
        for j in rānge(i):
        print("Oh no!")
    else:
        print("Phew!")
for i in range(n):
        foo(i)
```

- Start by computing total time taken by "slow" calls.

slow call \#	\# iters.
1	1
2	2
3	4
\vdots	\vdots
k	2^{k-1}

```
def foo(i):
    if is_power_of_two(i):
        for j iñ rānge(i):
        print("Oh no!")
    else:
        print("Phew!")
for i in range(n):
    foo(i)
```


Exercise

Out of the n calls to foo, (roughly) how many are slow?

Example: foo

slow call \#	\# iters.
1	1
2	2
3	4
\vdots	\vdots
k	2^{k-1}

- The total time taken over all slow calls is:
$1+2+4+\ldots+2^{k-1}+\ldots+2^{\log _{2}(n)-1}$
- This is a geometric sum.

Recall: Geometric Sum

- A geometric sum is a sum of the form:

$$
1+r+r^{2}+\ldots+r^{k-1}+\ldots+r^{n}=\sum_{k=0}^{n} r^{k}
$$

- There is a formula for this sum:

$$
\sum_{k=0}^{n} r^{k}=\frac{1-r^{n+1}}{1-r}
$$

Example: foo

- Recall our geometric sum for the total time taken by the slow calls:

$$
1+2+4+\ldots+2^{k-1}+\ldots+2^{\log _{2}(n)-1}=\sum_{k=0}^{\log _{2}(n)-1} 2^{k}
$$

- Using the formula on the previous slide with $r=2$ and $n=\log _{2}(n)-1$, we get:

$$
\sum_{k=0}^{\log _{2}(n)-1} 2^{k}=\frac{1-2^{\log _{2}(n)}}{1-2}=2^{\log _{2}(n)}-1=n-1=\Theta(n)
$$

Example: foo

```
def foo(i):
    if is_power_of_two(i):
        for j in rānge(i):
        print("Oh no!")
    else:
        print("Phew!")
for i in range(n):
    foo(i)
for i in range(n): foo(i)
```

- The total time taken by the slow calls is $\Theta(n)$.

```
def foo(i):
    if is_power_of_two(i):
    for j in range(i):
        print("Oh no!")
    else:
        print("Phew!")
    for i in range(n):
    foo(i)
```


Exercise

What is the total time taken by all of the fast calls to foo?

Example: foo

- Out of the n calls to foo, $\Theta\left(\log _{2} n\right)$ calls are "slow".
def foo(i):
if is_power_of_two(i): for j in range(i): print("Oh no!")
else:
print("Phew!")
for i in range(n): foo(i)
- So $\Theta(n-\log n)=\Theta(n)$ calls are "fast".
- Each fast call takes $\Theta(1)$ time.
- Total time taken by fast calls: $\Theta(n) \times \Theta(1)=\Theta(n)$.

Example: foo

- Amortized time:

$$
\begin{aligned}
T_{\text {amort }}(n) & =\frac{\text { (total time of fast calls) }+ \text { (total time of slow calls) }}{n} \\
& =\frac{\Theta(n)+\Theta(n)}{n} \\
& =\Theta(1)
\end{aligned}
$$

- The amortized time of foo is $\Theta(1)$ per call.

In other words...

- Some calls to foo are fast, taking $\Theta(1)$.
- Some calls to foo are slow, taking $\Theta(n)$.
- But the slow calls are rare enough that the amortized ("typical") cost per call is $\Theta(1)$.

Another View

- The cost of the slow iterations can be "spread over" the previous fast calls.
- This works because the slow calls are rare enough.

Observation

- Observation: the slow calls are get slower, but they also get rarer.
- Twice as bad, but half as frequent.
- Their increased cost is spread over a larger gap.

On the other hand...

def bar(i): if is_divisible_by_five(i):
for j in range(i): print("Oh no!")
else:
print("Phew!")
for i in range(n): foo(i)

Observation

- Observation: the slow calls are get slower, but are not getting rarer.
- Will lead to $\Theta(n)$ amortized cost, instead of $\Theta(1)$.

$$
\text { DST } 190
$$

Growth Strategies for Dynamic Arrays

Amortized Analysis of Dynamic Arrays

- What is the amortized cost of append on a dynamic array?
- It depends on the growth strategy.

Attempt \#1: Linear Growth

- Initially allocate S slots.
- When we run out, grow physical size to $2 S$ slots.
- When we run out again, physical size to $3 S$.
> etc.

Example

Analysis

- Every Sth append is slow, taking time $\Theta(k)$, where k is the number of elements stored.
- All other appends are fast, taking time $\Theta(1)$.

```
for i in range(n):
    dynamic_array.append("something")
```


Attempt \#1: Linear Growth

- The slow calls are getting worse (linearly), but are not getting rarer.
- This will lead to a linear amortized cost.

Attempt \#2: Geometric Growth

- Initially allocate S slots.
- When we run out, double the physical size.
- When we run out again, double it again.
- etc.

Example

for i in range(n): dynamic_array.append("something")

Informal Analysis

- The slow calls are getting slower (geometrically), but are getting rarer!
- This will lead to an amortized cost of $\Theta(1)$.

In general...

- We have used a growth factor of $\gamma=2$.
$>$ In general, we can use any $\gamma>1$.
- Next up: a formal analysis of the amortized cost for a general γ.

DSC 190 Lecture $2 \mid$ Part 5
Formal Analysis of Dynamic Arrays

Amortized Time Complexity

- The amortized time for an append is:

$$
T_{\text {amort }}(n)=\frac{\text { total time for } n \text { appends }}{n}
$$

- We'll see that $T_{\text {amort }}(n)=\Theta(1)$ when geometric resizing is used with any growth factor $\gamma>1$.

Amortized Analysis

total time for n appends
=
total time for non-growing appends
$+$
total time for growing appends

Counting Growing Appends

- Want to calculate time taken by growing appends.
- First: how many appends caused a resize?
- β : initial physical size
- γ : growth factor

Counting Growing Appends

- Suppose initial physical size is $\beta=512$, and $\gamma=2$
- Resizes occur on append \#:

$$
512,1024,2048,4096, \ldots
$$

- In general, resizes occur on append \#:

$$
\beta \gamma^{0}, \beta \gamma^{1}, \beta \gamma^{2}, \beta \gamma^{3}, \ldots
$$

Counting Growing Appends

- In a sequence of n appends, how many caused the physical size to grow?
- Simplification: Assume n is such that nth append caused a resize. Then, for some $x \in\{0,1,2, \ldots\}$:

$$
n=\beta \gamma^{x}
$$

- If $x=0$ there was 1 resize; if $x=1$ there were 2 ; etc.

Counting Growing Appends

- Solving for x :

$$
x=\log _{\gamma} \frac{n}{\beta}
$$

- Check: without assumption, $x=\left\lfloor\log _{\gamma} \frac{n}{\beta}\right\rfloor$
\Rightarrow Number of resizes is $\left\lfloor\log _{\gamma} \frac{n}{\beta}\right\rfloor+1$

Counting Growing Appends

- Number of resizes is $\left\lfloor\log _{\gamma} \frac{n}{\beta}\right\rfloor+1$
- Check with $\gamma=2, \beta=512, n=400$
- Correct \# of resizes: 0
- Check with $\gamma=2, \beta=512, n=1100$
- Correct \# of resizes: 2

Time of Growing Appends

- How much time was taken across all appends that caused resizes?
- Assumption: resizing an array with physical size k takes time $c k=\Theta(k)$.
$\downarrow c$ is a constant that depends on γ.

Time of Growing Appends

- Time for first resize: $c \beta$.
- Time for second resize: $c \gamma \beta$.
- Time for third resize: $c \gamma^{2} \beta$.
- Time for j th resize: $c \gamma^{j-1} \beta$.
- This is a geometric progression.

Time of Growing Appends

Time for j th resize: $c \gamma^{j-1} \beta$.

- Suppose there are r resizes.
- Total time:

$$
c \beta \sum_{j=1}^{r} \gamma^{j-1}=c \beta \sum_{j=0}^{r} \gamma^{j}
$$

Recall: Geometric Sum

From before:

$$
\sum_{k=0}^{n} r^{k}=\frac{1-r^{n+1}}{1-r}
$$

Time of Growing Appends

Total time:

$$
c \beta \sum_{j=0}^{r} \gamma^{j}=c \beta \frac{1-\gamma^{r+1}}{1-\gamma}
$$

Time of Growing Appends

- Remember: in n appends there are $r=\left\lfloor\log _{\gamma} \frac{n}{\beta}\right\rfloor+1$ resizes.

Total time:

$$
\begin{aligned}
c \beta \frac{1-\gamma^{\gamma+1}}{1-\gamma} & =c \beta \frac{1-\gamma^{\left[\log _{\gamma} \frac{n}{\beta}+2\right.}}{1-\gamma} \\
& =\Theta(n)
\end{aligned}
$$

Amortized Analysis

total time for n appends =
total time for non-growing appends
$+$
$\Theta(n) \quad \leftarrow$ total time for growing appends

Time of Non-Growing Appends

- In a sequence of n appends, how many are non-growing?

$$
\left.n-\left(\log _{\gamma} \frac{n}{\beta}\right\rfloor+1\right)=\Theta(n)
$$

- Time for one such append: $\Theta(1)$.
- Total time: $\Theta(n) \times \Theta(1)=\Theta(n)$.

Amortized Analysis

```
total time for n appends
=
\Theta(n)}\leftarrow\mathrm{ total time for non-growing appends
O(n)}\quad\leftarrow\mathrm{ total time for growing appends
```


Amortized Time Complexity

The amortized time for an append is:

$$
\begin{aligned}
T_{\text {amort }}(n) & =\frac{\text { total time for } n \text { appends }}{n} \\
& =\frac{\Theta(n)}{n} \\
& =\Theta(1)
\end{aligned}
$$

Dynamic Array Time Complexities

- Retrieve kth element: $\Theta(1)$
- Append/pop element at end:
- $\Theta(1)$ best case
- $\Theta(n)$ worst case (where $n=$ current size)
- $\Theta(1)$ amortized
- Insert/remove in middle: $O(n)$
- May or may not need resize, still $O(n)$!

DST 190 Lecture $2 \mid$ Part 6 Practicalities

Advantages

- Great cache performance (it's an array).
- Fast access.
- Don't need to know size in advance of allocation.

Downsides

Wasted memory.

Expensive deletion in middle.

Implementations

Python: list

C++: std:: vector

Java: ArrayList

(notebook posted on dsc190.com)

Exercise

Why do we need np.array? Python's list is a dynamic array, isn't that better?

In defense of np.array

- Memory savings are one reason.
- Bigger reason: using Python's list to store numbers does not have good cache performance.

