DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 2 | Part 1

Recap

Arrays vs. Linked Lists

- Last time, we reviewed two ways of storing sequential data: **arrays** and **linked lists**.
- Arrays support constant time access, but are slow to grow.

 Arrays
- Linked lists are fast to grow but slow to access.

Motivation

- Can we have the best of both worlds?
- \triangleright $\Theta(1)$ time access like an array.
- \triangleright $\Theta(1)$ time append like a linked list.
- Yes! (sort of)

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 2 | Part 2

Dynamic Arrays

Why are arrays slow to grow?

- Appending to an array requires:¹
 - 1. allocating a new chunk of memory; and
 - 2. copying the entire array to the new chunk.
- Thus each append takes $\Theta(k)$ time, where k is current number of elements stored.

¹There are some subtleties here. See: https://youtu.be/5J6UlEdvDSk

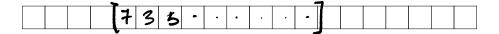
4, 7, 3

The Idea

- Allocate a larger underlying array than initially needed.
 - Some "empty space" at end of array to "grow into".
- Only need to allocate more memory when we run out of empty space.
- [473109129]

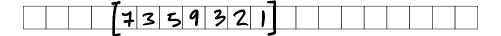
Physical Size vs. Logical Size

- Our array will have two "sizes".
- Physical size: the size of the underlying array.
 - ► I.e., the number of "slots" that have been allocated.
- Logical size: the number of elements currently 5 being stored.
 - ▶ I.e., the number of "slots" being used.



Appending

- If there is **empty space** (logical < physical), just insert the element into first empty slot in Θ(1) time (**fast**).
- If there is no empty space (logical = physical), grow the underlying array in Θ(k) time, then insert the element (slow).



Intuition

- ▶ Most appends are fast: $\Theta(1)$ time.
- ► Some appends are slow: $\Theta(k)$ time.
- If slow appends are **rare enough**, the "typical" time of an append will be close to Θ(1).

Dynamic Arrays

- This data structure is called a dynamic array.
- Fast access (it's just an array), and fast appends (most of the time).
- ► The big remaining question: how much do we grow the array when we run out of space?
- The right strategy makes all the difference.

"Typical" Time

- Our goal is to design a strategy to minimize the "typical" time of an append.
- What do we mean by "typical", exactly?
- Up next, a new way of measuring "typical" time: amortized time complexity.

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 2 | Part 3

Amortized Analysis

Goal

- Measure the "typical" time taken by an operation:
 - most of the time, the operation is fast;
 - but sometimes, the operation is slow.
- Idea: "spread" the cost of the slow operations over the many fast operations.

Amortization

- Amortization means spreading out the cost of something over time.
- E.g., buying a car:
 - Up-front cost: \$30,000
 - ► Amortized cost over 60 months:
 - \$500/month

Example: UCSD Parking

- Parking costs \$7 per day (for faculty).
- Every 100 days, you forget to pay and get a \$80 ticket.

The "amortized cost" of parking is:

$$\frac{\text{total cost}}{\text{total days}} = \frac{\$700 + \$80}{100} = \$7.80$$

Amortized Analysis

- Amortized analysis is a way of measuring the "typical" time of an operation in a sequence.
- Idea: spread the cost of the slow operations over the many fast operations.
- ► **Approach:** compute total time of operations, divide by number of operations.²

²Related to average case analysis, but not quite the same.

Computing Amortized Time

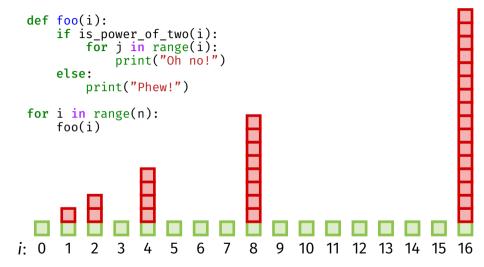
► The **amortized time** of *n* operations is:

$$T_{\text{amort}}(n) = \frac{\text{total time taken by all operations}}{n}$$

An equivalent strategy is to separately analyze the "fast" and "slow" operations (ops):

$$T_{\text{amort}}(n) = \frac{\text{(total time of fast ops)} + \text{(total time of slow ops)}}{n}$$

```
def foo(i):
    if is power of two(i):
        for j in range(i): 3 (i)
print("Oh no!")
    else:
        print("Phew!") — > (i)
for i in range(n):
    foo(i)
```



```
def foo(i):
    if is_power_of_two(i):
        for j in range(i):
            print("Oh no!")
    else:
        print("Phew!")

for i in range(n):
    foo(i)
```

Start by computing total time taken by "slow" calls.

slow call #	# iters.
1	1
2	2
3	4
:	V-1
k	2

```
def foo(i):
    if is_power_of_two(i):
        for j in range(i):
            print("Oh no!")
    else:
        print("Phew!")

for i in range(n):
    foo(i)
```

Start by computing total time taken by "slow" calls.

slow call #	# iters.
1	1
2	2
3	4
:	:
k	2 ^{k-1}

```
def foo(i):
    if is_power_of_two(i):
        for j in range(i):
            print("Oh no!")
    else:
        print("Phew!")

for i in range(n):
    foo(i)
```

Exercise

Out of the n calls to foo, (roughly) how many are slow?

slow call #	# iters.
1	1
2	2
3	4
:	:
k	2^{k-1}
lozn	2 (log 2) -

The total time taken over all slow calls is:

$$1+2+4+...+2^{k-1}+...+2^{\log_2(n)-1}$$

This is a geometric sum.

Recall: Geometric Sum

A geometric sum is a sum of the form:

$$1 + r + r^{2} + \dots + r^{k-1} + \dots + r^{n} = \sum_{k=0}^{n} r^{k}$$

$$1 + 2 + 4 + 8 + 16 = 3$$

▶ There is a formula for this sum:

$$\sum_{k=0}^{n} r^{k} = \frac{1 - r^{n+1}}{1 - r}$$

$$\frac{1 - 2^{5}}{1 - 2}$$

$$\frac{2^{5} - 32}{1 - 2}$$

Recall our geometric sum for the total time taken by the slow calls:

1 + 2 + 4 + ... +
$$2^{k-1}$$
 + ... + $2^{\log_2(n)-1}$ = $\sum_{k=0}^{\log_2(n)-1} 2^k$

Using the formula on the previous slide with r = 2 and $n = \log_2(n) - 1$, we get:

$$\sum_{k=0}^{\log_2(n)-1} 2^k = \frac{1-2^{\log_2(n)}}{1-2} = 2^{\log_2(n)} - 1 = n - 1 = \Theta(n)$$

```
def foo(i):
    if is_power_of_two(i):
        for j in range(i):
            print("Oh no!")
    else:
        print("Phew!")

for i in range(n):
    foo(i)
```

The total time taken by the **slow** calls is $\Theta(n)$.

```
def foo(i):
    if is_power_of_two(i):
        for j in range(i):
            print("Oh no!")
    else:
        print("Phew!")

for i in range(n):
    foo(i)
```

Exercise

What is the total time taken by all of the **fast** calls to foo?

```
def foo(i):
    if is_power_of_two(i):
        for j in range(i):
            print("Oh no!")
    else:
        print("Phew!")
for i in range(n):
    foo(i)
```

- Out of the n calls to foo, $\Theta(\log_2 n)$ calls are "slow".
- So $\Theta(n \log n) = \Theta(n)$ calls are "fast".
- Each fast call takes Θ(1) time.

Total time taken by fast calls: $\Theta(n) \times \Theta(1) = \Theta(n)$.

Amortized time:

$$T_{\text{amort}}(n) = \frac{\text{(total time of fast calls) + (total time of slow calls)}}{n}$$
$$= \frac{\Theta(n) + \Theta(n)}{n}$$
$$= \Theta(1)$$

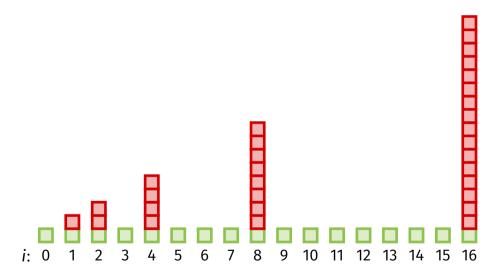
▶ The amortized time of foo is $\Theta(1)$ per call.

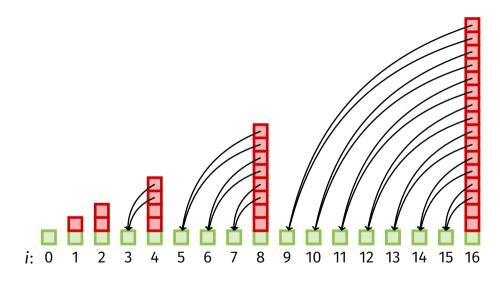
In other words...

- ▶ Some calls to foo are fast, taking $\Theta(1)$.
- ▶ Some calls to foo are slow, taking $\Theta(n)$.
- But the slow calls are rare enough that the amortized ("typical") cost per call is Θ(1).

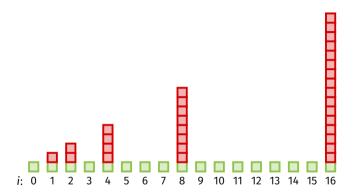
Another View

- ► The cost of the **slow** iterations can be "spread over" the previous **fast** calls.
- This works because the slow calls are rare enough.





Observation

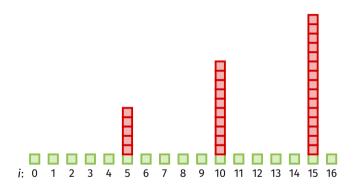


- Observation: the slow calls are get slower, but they also get rarer.
 - Twice as bad, but half as frequent.
 - ► Their increased cost is spread over a larger gap.

On the other hand...

```
def bar(i):
    if is divisible by five(i):
        for j in range(i):
            print("Oh no!")
    else:
        print("Phew!")
for i in range(n):
    foo(i)
```

Observation



- Observation: the slow calls are get slower, but are not getting rarer.
 - ▶ Will lead to $\Theta(n)$ amortized cost, instead of $\Theta(1)$.

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 2 | Part 4

Growth Strategies for Dynamic Arrays

Amortized Analysis of Dynamic Arrays

What is the amortized cost of append on a dynamic array?

It depends on the growth strategy.

Attempt #1: Linear Growth

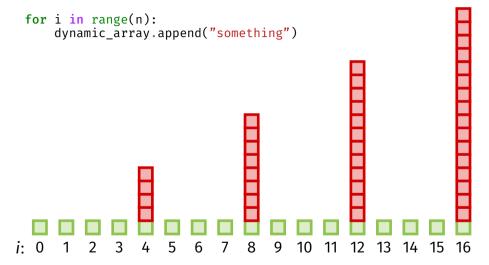
- ► Initially allocate S slots.
- ▶ When we run out, grow physical size to 2S slots.
- When we run out again, physical size to 3S.
- etc.

Example

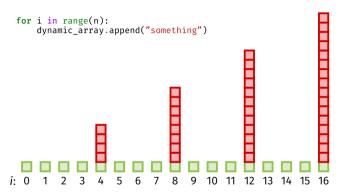
Analysis

Every Sth append is **slow**, taking time $\Theta(k)$, where k is the number of elements stored.

ightharpoonup All other appends are **fast**, taking time $\Theta(1)$.



Attempt #1: Linear Growth

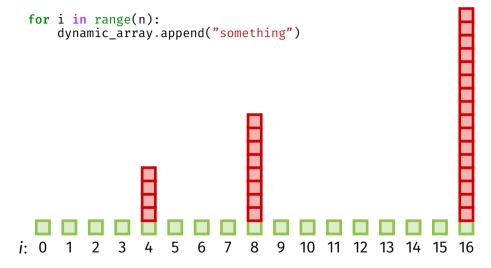


- ► The **slow calls** are getting worse (linearly), but are **not** getting rarer.
 - ► This will lead to a linear amortized cost.

Attempt #2: Geometric Growth

- ► Initially allocate S slots.
- ▶ When we run out, double the physical size.
- When we run out again, double it again.
- etc.

Example



Informal Analysis

- The slow calls are getting slower (geometrically), but are getting rarer!
- ▶ This will lead to an amortized cost of $\Theta(1)$.

In general...

- ▶ We have used a **growth factor** of y = 2.
- ► In general, we can use any $\gamma > 1$.
- Next up: a formal analysis of the amortized cost for a general γ.

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 2 | Part 5

Formal Analysis of Dynamic Arrays

Amortized Time Complexity

The amortized time for an append is:

$$T_{\text{amort}}(n) = \frac{\text{total time for } n \text{ appends}}{n}$$

We'll see that $T_{\text{amort}}(n) = \Theta(1)$ when geometric resizing is used with any growth factor $\gamma > 1$.

Amortized Analysis

```
total time for n appends

=
total time for non-growing appends

+
total time for growing appends
```

- Want to calculate time taken by growing appends.
- First: how many appends caused a resize?
 - \triangleright β : initial physical size
 - γ: growth factor

- ► Suppose initial physical size is β = 512, and γ = 2
- Resizes occur on append #:

► In general, resizes occur on append #:

$$\beta \gamma^0, \beta \gamma^1, \beta \gamma^2, \beta \gamma^3, ...$$

- In a sequence of *n* appends, how many caused the physical size to grow?
- Simplification: Assume n is such that nth append caused a resize. Then, for some $x \in \{0, 1, 2, ...\}$:

$$n = \beta y^x$$

If x = 0 there was 1 resize; if x = 1 there were 2; etc.

► Solving for *x*:

$$x = \log_{\gamma} \frac{n}{\beta}$$

- ► Check: without assumption, $x = \lfloor \log_v \frac{n}{B} \rfloor$
- Number of resizes is $\lfloor \log_v \frac{n}{B} \rfloor + 1$

- Number of resizes is $\lfloor \log_v \frac{n}{B} \rfloor + 1$
- ► Check with γ = 2, β = 512, n = 400
 - Correct # of resizes: 0
- \triangleright Check with y = 2, β = 512, n = 1100
 - Correct # of resizes: 2

- How much time was taken across all appends that caused resizes?
- Assumption: resizing an array with physical size k takes time $ck = \Theta(k)$.
 - c is a constant that depends on y.

- Time for first resize: \(\mathbb{e} \beta \).
- Time for second resize: $c\gamma\beta$.
- ► Time for third resize: $c\gamma^2\beta$.
- ► Time for *j*th resize: $c\gamma^{j-1}\beta$.
- ► This is a **geometric progression**.

- ► Time for *j*th resize: $c\gamma^{j-1}\beta$.
- Suppose there are r resizes.
- Total time:

$$c\beta \sum_{i=1}^{r} \gamma^{j-1} = c\beta \sum_{i=0}^{r} \gamma^{j}$$

Recall: Geometric Sum

From before:

$$\sum_{k=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}$$

► Total time:

$$c\beta \sum_{j=0}^{r} \gamma^{j} = c\beta \frac{1 - \gamma^{r+1}}{1 - \gamma}$$

Remember: in *n* appends there are $r = \lfloor \log_{\gamma} \frac{n}{\beta} \rfloor + 1$ resizes.

► Total time:

$$c\beta \frac{1 - \gamma^{r+1}}{1 - \gamma} = c\beta \frac{1 - \gamma^{\lfloor \log_{\gamma} \frac{n}{\beta} \rfloor + 2}}{1 - \gamma}$$
$$= \Theta(n)$$

Amortized Analysis

```
total time for n appends

=
total time for non-growing appends
+
Θ(n) ← total time for growing appends
```

In a sequence of n appends, how many are non-growing?

$$n - \left(\lfloor \log_{\gamma} \frac{n}{\beta} \rfloor + 1 \right) = \Theta(n)$$

- \triangleright Time for one such append: $\Theta(1)$.
- ► Total time: $\Theta(n) \times \Theta(1) = \Theta(n)$.

Amortized Analysis

```
total time for n appends
```

```
=
```

 $\Theta(n)$

← total time for **non-growing** appends

```
+
```

 $\Theta(n) \leftarrow \text{total time for growing appends}$

Amortized Time Complexity

► The **amortized** time for an append is:

$$T_{\text{amort}}(n) = \frac{\text{total time for } n \text{ appends}}{n}$$
$$= \frac{\Theta(n)}{n}$$
$$= \Theta(1)$$

5 2 3 4 Dynamic Array Time Complexities

- Retrieve kth element: Θ(1)
- Append/pop element at end:
 - \triangleright $\Theta(1)$ best case
 - \triangleright $\Theta(n)$ worst case (where n = current size)
 - ▶ Θ(1) amortized
- ► Insert/remove in middle: *O*(*n*)
 - May or may not need resize, still O(n)!

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 2 | Part 6

Practicalities

Advantages

- Great cache performance (it's an array).
- ► Fast access.
- ▶ Don't need to know size in advance of allocation.

Downsides

- Wasted memory.
- Expensive deletion in middle.

Implementations

Python: list

► C++: std::vector

► Java: ArrayList

(notebook posted on dsc190.com)

[3, "justin", politata France]

Exercise

Why do we need np.array? Python's list is a dynamic array, isn't that better?

In defense of np.array

- Memory savings are one reason.
- Bigger reason: using Python's list to store numbers does not have good cache performance.

