
Lecture 2 | Part 1

Recap

Arrays vs. Linked Lists▶ Last time, we reviewed two ways of storing
sequential data: arrays and linked lists.▶ Arrays support constant time access, but are
slow to grow.▶ Linked lists are fast to grow but slow to access.

arr[42]

Motivation▶ Can we have the best of both worlds?▶ Θ(1) time access like an array.▶ Θ(1) time append like a linked list.▶ Yes! (sort of)

Lecture 2 | Part 2

Dynamic Arrays

Why are arrays slow to grow?▶ Appending to an array requires:1
1. allocating a new chunk of memory; and
2. copying the entire array to the new chunk.▶ Thus each append takes Θ(𝑘) time, where 𝑘 is

current number of elements stored.

1There are some subtleties here. See: https://youtu.be/5J6UlEdvDSk

--
↑I~ -

.... M ...

wa

The Idea▶ Allocate a larger underlying array than initially
needed.▶ Some “empty space” at end of array to “grow into”.▶ Only need to allocate more memory when we run
out of empty space.

4
,
7
,
3

[473/09/29]

Physical Size vs. Logical Size▶ Our array will have two “sizes”.▶ Physical size: the size of the underlying array.▶ I.e., the number of “slots” that have been allocated.▶ Logical size: the number of elements currently
being stored.▶ I.e., the number of “slots” being used.

q

3

7735

Appending▶ If there is empty space (logical < physical), just
insert the element into first empty slot in Θ(1)
time (fast).▶ If there is no empty space (logical = physical),
grow the underlying array in Θ(𝑘) time, then
insert the element (slow).

773593217

Intuition▶ Most appends are fast: Θ(1) time.▶ Some appends are slow: Θ(𝑘) time.▶ If slow appends are rare enough, the “typical”
time of an append will be close to Θ(1).

Dynamic Arrays▶ This data structure is called a dynamic array.▶ Fast access (it’s just an array), and fast appends
(most of the time).▶ The big remaining question: how much do we
grow the array when we run out of space?▶ The right strategy makes all the difference.

“Typical” Time▶ Our goal is to design a strategy to minimize the
“typical” time of an append.▶ What do we mean by “typical”, exactly?▶ Up next, a new way of measuring “typical” time:
amortized time complexity.

Lecture 2 | Part 3

Amortized Analysis

Goal▶ Measure the “typical” time taken by an operation:▶ most of the time, the operation is fast;▶ but sometimes, the operation is slow.▶ Idea: “spread” the cost of the slow operations
over the many fast operations.

Amortization▶ Amortization means spreading out the cost of
something over time.▶ E.g., buying a car:▶ Up-front cost: $30,000▶ Amortized cost over 60 months:

$500/month

Example: UCSD Parking▶ Parking costs $7 per day (for faculty).▶ Every 100 days, you forget to pay and get a $80
ticket.▶ The “amortized cost” of parking is:

total cost
total days = $700 + $80100 = $7.80

Amortized Analysis▶ Amortized analysis is a way of measuring the
“typical” time of an operation in a sequence.▶ Idea: spread the cost of the slow operations over
the many fast operations.▶ Approach: compute total time of operations,
divide by number of operations.2

2Related to average case analysis, but not quite the same.

Computing Amortized Time▶ The amortized time of 𝑛 operations is:𝑇amort(𝑛) = total time taken by all operations𝑛▶ An equivalent strategy is to separately analyze
the “fast” and “slow” operations (ops):𝑇amort(𝑛) = (total time of fast ops) + (total time of slow ops)𝑛

Example: foo
def foo(i):

if is_power_of_two(i):
for j in range(i):

print(”Oh no!”)
else:

print(”Phew!”)

for i in range(n):
foo(i)

30(i)
-> O(1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16𝑖:

def foo(i):
if is_power_of_two(i):

for j in range(i):
print(”Oh no!”)

else:
print(”Phew!”)

for i in range(n):
foo(i)

Example: foo

def foo(i):
if is_power_of_two(i):

for j in range(i):
print(”Oh no!”)

else:
print(”Phew!”)

for i in range(n):
foo(i)

▶ Start by computing total
time taken by “slow” calls.

slow call # # iters.

1
2
3⋮ ⋮𝑘
I
2

↳

21
- 1

Example: foo

def foo(i):
if is_power_of_two(i):

for j in range(i):
print(”Oh no!”)

else:
print(”Phew!”)

for i in range(n):
foo(i)

▶ Start by computing total
time taken by “slow” calls.

slow call # # iters.

1 1
2 2
3 4⋮ ⋮𝑘 2𝑘−1

def foo(i):
if is_power_of_two(i):

for j in range(i):
print(”Oh no!”)

else:
print(”Phew!”)

for i in range(n):
foo(i)

Exercise
Out of the 𝑛 calls to foo, (roughly) how many are
slow? log,

Example: foo

slow call # # iters.
1 1
2 2
3 4⋮ ⋮𝑘 2𝑘−1

▶ The total time taken over
all slow calls is:1+2+4+…+2𝑘−1+…+2log2(𝑛)−1▶ This is a geometric sum.

log Ifog ,n)-1

Recall: Geometric Sum▶ A geometric sum is a sum of the form:1 + 𝑟 + 𝑟2 + … + 𝑟𝑘−1 + … + 𝑟𝑛 = 𝑛∑𝑘=0 𝑟𝑘▶ There is a formula for this sum:𝑛∑𝑘=0 𝑟𝑘 = 1 − 𝑟𝑛+11 − 𝑟
25
- 1 = 3)

1+ 2 + 4+ 8 + 16 = 3)

r= 2 n
= 4

-25 25 =

32
1 - 2

Example: foo▶ Recall our geometric sum for the total time
taken by the slow calls:1 + 2 + 4 + … + 2𝑘−1 + … + 2log2(𝑛)−1 = log2(𝑛)−1∑𝑘=0 2𝑘▶ Using the formula on the previous slide with𝑟 = 2 and 𝑛 = log2(𝑛) − 1, we get:log2(𝑛)−1∑𝑘=0 2𝑘 = 1 − 2log2(𝑛)1 − 2 = 2log2(𝑛) − 1 = 𝑛 − 1 = Θ(𝑛)

Example: foo
def foo(i):

if is_power_of_two(i):
for j in range(i):

print(”Oh no!”)
else:

print(”Phew!”)

for i in range(n):
foo(i)

▶ The total time taken by
the slow calls is Θ(𝑛).

def foo(i):
if is_power_of_two(i):

for j in range(i):
print(”Oh no!”)

else:
print(”Phew!”)

for i in range(n):
foo(i)

Exercise
What is the total time taken by all of the fast calls
to foo? ⑦(n)

Example: foo

def foo(i):
if is_power_of_two(i):

for j in range(i):
print(”Oh no!”)

else:
print(”Phew!”)

for i in range(n):
foo(i)

▶ Out of the 𝑛 calls to foo,Θ(log2 𝑛) calls are “slow”.▶ So Θ(𝑛 − log 𝑛) = Θ(𝑛) calls
are “fast”.▶ Each fast call takes Θ(1)
time.▶ Total time taken by fast
calls: Θ(𝑛) × Θ(1) = Θ(𝑛).

Example: foo▶ Amortized time:𝑇amort(𝑛) = (total time of fast calls) + (total time of slow calls)𝑛= Θ(𝑛) + Θ(𝑛)𝑛= Θ(1)▶ The amortized time of foo is Θ(1) per call.

In other words...▶ Some calls to foo are fast, taking Θ(1).▶ Some calls to foo are slow, taking Θ(𝑛).▶ But the slow calls are rare enough that the
amortized (“typical”) cost per call is Θ(1).

Another View▶ The cost of the slow iterations can be “spread
over” the previous fast calls.▶ This works because the slow calls are rare
enough.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16𝑖:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16𝑖:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16𝑖:

Observation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16𝑖:▶ Observation: the slow calls are get slower, but
they also get rarer.▶ Twice as bad, but half as frequent.▶ Their increased cost is spread over a larger gap.

On the other hand...
def bar(i):

if is_divisible_by_five(i):
for j in range(i):

print(”Oh no!”)
else:

print(”Phew!”)

for i in range(n):
foo(i)

Observation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16𝑖:▶ Observation: the slow calls are get slower, but
are not getting rarer.▶ Will lead to Θ(𝑛) amortized cost, instead of Θ(1).

Lecture 2 | Part 4

Growth Strategies for Dynamic Arrays

Amortized Analysis of Dynamic
Arrays▶ What is the amortized cost of append on a

dynamic array?▶ It depends on the growth strategy.

Attempt #1: Linear Growth▶ Initially allocate 𝑆 slots.▶ When we run out, grow physical size to 2𝑆 slots.▶ When we run out again, physical size to 3𝑆.▶ etc.

Example
& I-J

Analysis▶ Every 𝑆th append is slow, taking time Θ(𝑘), where𝑘 is the number of elements stored.▶ All other appends are fast, taking time Θ(1).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16𝑖:

for i in range(n):
dynamic_array.append(”something”)

Attempt #1: Linear Growth

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16𝑖:

for i in range(n):
dynamic_array.append(”something”)

▶ The slow calls are getting worse (linearly), but
are not getting rarer.▶ This will lead to a linear amortized cost.

Attempt #2: Geometric Growth▶ Initially allocate 𝑆 slots.▶ When we run out, double the physical size.▶ When we run out again, double it again.▶ etc.

Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16𝑖:

for i in range(n):
dynamic_array.append(”something”)

Informal Analysis▶ The slow calls are getting slower (geometrically),
but are getting rarer!▶ This will lead to an amortized cost of Θ(1).

In general...▶ We have used a growth factor of 𝛾 = 2.▶ In general, we can use any 𝛾 > 1.▶ Next up: a formal analysis of the amortized cost
for a general 𝛾.

Lecture 2 | Part 5

Formal Analysis of Dynamic Arrays

Amortized Time Complexity▶ The amortized time for an append is:𝑇amort(𝑛) = total time for 𝑛 appends𝑛▶ We’ll see that 𝑇amort(𝑛) = Θ(1) when geometric
resizing is used with any growth factor 𝛾 > 1.

Amortized Analysis

total time for 𝑛 appends=
total time for non-growing appends+
total time for growing appends

fast

stew

Counting Growing Appends▶ Want to calculate time taken by growing
appends.▶ First: how many appends caused a resize?▶ 𝛽: initial physical size▶ 𝛾: growth factor

Counting Growing Appends▶ Suppose initial physical size is 𝛽 = 512, and 𝛾 = 2▶ Resizes occur on append #:512, 1024, 2048, 4096,…▶ In general, resizes occur on append #:𝛽𝛾0, 𝛽𝛾1, 𝛽𝛾2, 𝛽𝛾3, …

Counting Growing Appends▶ In a sequence of 𝑛 appends, how many caused
the physical size to grow?▶ Simplification: Assume 𝑛 is such that 𝑛th append
caused a resize. Then, for some 𝑥 ∈ {0, 1, 2, …}:𝑛 = 𝛽𝛾𝑥▶ If 𝑥 = 0 there was 1 resize; if 𝑥 = 1 there were 2;
etc.

Counting Growing Appends▶ Solving for 𝑥: 𝑥 = log𝛾 𝑛𝛽▶ Check: without assumption, 𝑥 = ⌊log𝛾 𝑛𝛽⌋▶ Number of resizes is ⌊log𝛾 𝑛𝛽⌋ + 1

Counting Growing Appends▶ Number of resizes is ⌊log𝛾 𝑛𝛽⌋ + 1▶ Check with 𝛾 = 2, 𝛽 = 512, 𝑛 = 400▶ Correct # of resizes: 0▶ Check with 𝛾 = 2, 𝛽 = 512, 𝑛 = 1100▶ Correct # of resizes: 2

Time of Growing Appends▶ How much time was taken across all appends
that caused resizes?▶ Assumption: resizing an array with physical size 𝑘
takes time 𝑐𝑘 = Θ(𝑘).▶ 𝑐 is a constant that depends on 𝛾.

Time of Growing Appends▶ Time for first resize: 𝑐𝛽.▶ Time for second resize: 𝑐𝛾𝛽.▶ Time for third resize: 𝑐𝛾2𝛽.▶ Time for 𝑗th resize: 𝑐𝛾𝑗−1𝛽.▶ This is a geometric progression.

G

Time of Growing Appends▶ Time for 𝑗th resize: 𝑐𝛾𝑗−1𝛽.▶ Suppose there are 𝑟 resizes.▶ Total time: 𝑐𝛽 𝑟∑𝑗=1 𝛾𝑗−1 = 𝑐𝛽 𝑟∑𝑗=0 𝛾𝑗

Recall: Geometric Sum▶ From before: 𝑛∑𝑘=0 𝑟𝑘 = 1 − 𝑟𝑛+11 − 𝑟

Time of Growing Appends▶ Total time: 𝑐𝛽 𝑟∑𝑗=0 𝛾𝑗 = 𝑐𝛽1 − 𝛾𝑟+11 − 𝛾

Time of Growing Appends▶ Remember: in 𝑛 appends there are 𝑟 = ⌊log𝛾 𝑛𝛽⌋ + 1
resizes.▶ Total time: 𝑐𝛽1 − 𝛾𝑟+11 − 𝛾 = 𝑐𝛽1 − 𝛾⌊log𝛾 𝑛𝛽 ⌋+21 − 𝛾= Θ(𝑛)

Amortized Analysis

total time for 𝑛 appends=
total time for non-growing appends+Θ(𝑛) ← total time for growing appends

Time of Non-Growing Appends▶ In a sequence of 𝑛 appends, how many are
non-growing?𝑛 − (⌊log𝛾 𝑛𝛽⌋ + 1) = Θ(𝑛)▶ Time for one such append: Θ(1).▶ Total time: Θ(𝑛) × Θ(1) = Θ(𝑛).

Amortized Analysis

total time for 𝑛 appends=Θ(𝑛) ← total time for non-growing appends+Θ(𝑛) ← total time for growing appends

Amortized Time Complexity▶ The amortized time for an append is:𝑇amort(𝑛) = total time for 𝑛 appends𝑛= Θ(𝑛)𝑛= Θ(1)

Dynamic Array Time Complexities▶ Retrieve 𝑘th element: Θ(1)▶ Append/pop element at end:▶ Θ(1) best case▶ Θ(𝑛) worst case (where 𝑛 = current size)▶ Θ(1) amortized▶ Insert/remove in middle: 𝑂(𝑛)▶ May or may not need resize, still 𝑂(𝑛)!

523 q4

Lecture 2 | Part 6

Practicalities

Advantages▶ Great cache performance (it’s an array).▶ Fast access.▶ Don’t need to know size in advance of allocation.

Downsides▶ Wasted memory.▶ Expensive deletion in middle.

Implementations▶ Python: list▶ C++: std::vector▶ Java: ArrayList

(notebook posted on dsc190.com)

Exercise
Why do we need np.array? Python’s list is a dy-
namic array, isn’t that better?

I3
,

"

justin" , pd.DataFrame]

In defense of np.array▶ Memory savings are one reason.▶ Bigger reason: using Python’s list to store
numbers does not have good cache performance.

I [352 1)
-↳↳pd .DataFrame

