DPSC /90

DATA STRUCTURES § ALLORITHMS

Lecture 2 Part1

Recap

Arrays vs. Linked Lists

Last time, we reviewed two ways of storing
sequential data: arrays and linked lists.

Arrays support constant time access, but are
slow to grow. aN[H'L]

Linked lists are fast to grow but slow to access.

Motivation
Can we have the best of both worlds?
O(1) time access like an array.
O(1) time append like a linked list.

Yes! (sort of)

DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 2 Part?2

Dynamic Arrays

Why are arrays slow to grow?

Appending to an array requires:’
allocating a new chunk of memory; and
copying the entire array to the new chunk.

Thus each append takes O(R) time, where kR is

"There are some subtleties here. See: https://youtu.be/536UTEdvDSk

T 2

))

The Idea

Allocate a larger underlying array than initially
needed.
Some “empty space” at end of array to “grow into”.

Only need to allocate more memory when we run
out of empty space.

RERUEEV2A7 IR

Physical Size vs. Logical Size
Our array will have two “sizes”.

Physical size: the size of the underlying array.
l.e., the number of “slots” that have been allocated.

Logical size: the number of elements currently ?)

being stored.
l.e., the number of “slots” being used.

EERRCEPEREERD IEEREE.

Appending

If there is empty space (logical < physical), just
insert the element into first empty slot in ©(1)
time (fast).

If there is no empty space (logical = physical),
grow the underlying array in ©(R) time, then
insert the element (slow).

[[Hzlzalg2n] [T

Intuition
Most appends are fast: (1) time.
Some appends are slow: O(R) time.

If slow appends are rare enough, the “typical”
time of an append will be close to O(1).

Dynamic Arrays
This data structure is called a dynamic array.

Fast access (it's just an array), and fast appends
(most of the time).

The big remaining question: how much do we
grow the array when we run out of space?

The right strategy makes all the difference.

“Typical” Time

Our goal is to design a strategy to minimize the
“typical” time of an append.

What do we mean by “typical”, exactly?

Up next, a new way of measuring “typical” time:
amortized time complexity.

DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 2 Part3

Amortized Analysis

Goal

Measure the “typical” time taken by an operation:
most of the time, the operation is fast;
but sometimes, the operation is slow.

|dea: “spread” the cost of the slow operations
over the many fast operations.

Amortization

Amortization means spreading out the cost of
something over time.

E.g., buying a car:
Up-front cost: $30,000
Amortized cost over 60 months:
$500/month

Example: UCSD Parking

Parking costs $7 per day (for faculty).

Every 100 days, you forget to pay and get a $80
ticket.

The “amortized cost” of parking is:

total cost _ $700 + $80

total days 100 37.80

Amortized Analysis

Amortized analysis is a way of measuring the
“typical” time of an operation in a sequence.

Idea: spread the cost of the slow operations over
the many fast operations.

Approach: compute total time of operations,
divide by number of operations.?

ZRelated to average case analysis, but not quite the same.

Computing Amortized Time

The amortized time of n operations is:

total time taken by all operations
Tamort(N) = n

An equivalent strategy is to separately analyze
the “fast” and “slow” operations (ops):

(total time of fast ops) + (total time of slow ops)
n

Tamort(n) =

Example: foo

def foo(i):
if is_power_of_two(i):
for j in range(i): <
L
print(”0Oh no!") @()
else:

print(”Phew!"”) — > (:7(C>

for i in range(n):
foo(i)

def foo(i):
if is_power_of_two(i):
for j in range(i):
print(”0h no!")
else:
print(”Phew!"”)

for i in range(n):
foo(i)

DEHD OO0OO0O0O0O0OO0OooOoo
01 2 3 5 6 7 9

i 4 8 10 11 12 13 14 15 16

Example: foo

Start by computing total
def foo(i): time taken by “slow” calls.
if is_power_of_two(i):
for j in range(i):

orint(”oh no!”) slow call # | # iters.
else:
: n n 1 1
int("Phew!
print(w!™) 5 7
for i in range(n): 3 Y

foo(1i)

.
.
-

k 92¥

Example: foo

Start by computing total
def foo(i): time taken by “slow” calls.
if is_power_of_two(i):
for j in range(i):

print(”0h no!”) slow call # | # iters.
else: ; ;
rint("”"Phew!”
print(w!™) ,)
for i in range(n):

w
o I~

foo(1i)

def foo(i):
if is_power_of_two(i):
for j in range(i):
print(”0h no!")
else:
print(”Phew!”)

for i in range(n):
foo(1i)

Out of the n calls to foo, (roughly) how many are
slow? 08 ™
L

Example: foo

slow call # \ # iters.

1 1
2

3 4

k 2k.—1

The total time taken over
all slow calls is:

14244+, 42014 421080

This is a geometric sum.

Recall: Geometric Sum

A geometric sum is a sum of the form:

n)
1+r+r2+...+rk'1+...+r”=Zrk v
12 +948406 =%

There is a formula for this sum:

i k. rn+‘| f"/Z_ Yl"q
r
k=0)-2° 2%-37

—

/-2

A-H

Example: foo

Recall our geometric sum for the total time
taken by the slow calls:

log,(n)-1
1+2+4+ . +28T 4 4 2[°g2(n)_1 = 2R
k=0

Using the formula on the previous slide with
r=2and n = log,(n) - 1, we get:

log,(n)-1 1 — 9logy(n)

k=2~ -2& _q1-pn_1=0(n)
£ 1-2

Example: foo

def foo(i):
if is_power_of_two(i):
for j in range(i):
print(”0h no!")
else:
print(”Phew!"”)

for i in range(n):
foo(1i)

The total time taken by
the slow calls is ©(n).

def foo(i):
if is_power_of_two(i):
for j in range(i):
print(”0h no!")
else:
print(”Phew!”)

for i in range(n):
foo(i)

What is the total time taken by all of the fast calls

to foo? Q(n)

Example: foo

def foo(i):
if is_power_of_two(i):
for j in range(i):
print(”0h no!")
else:
print(”Phew!”)

for i in range(n):
foo(i)

Out of the n calls to foo,
O(log, n) calls are “slow”.

So O(n - logn) = ©(n) calls
are “fast”.

Each fast call takes ©(1)
time.

Total time taken by fast
calls: ©(n) x ©(1) = O(n).

Example: foo

Amortized time:

(total time of fast calls) + (total time of slow calls)
Tamort(n) = n

0(n) + O(n)

The amortized time of foo is (1) per call.

In other words...
Some calls to foo are fast, taking ©(1).
Some calls to foo are slow, taking ©(n).

But the slow calls are rare enough that the
amortized (“typical”) cost per call is ©(1).

Another View

The cost of the slow iterations can be “spread
over” the previous fast calls.

This works because the slow calls are rare
enough.

9 10 1M 12 13 14 15 16

EDDDDDDDE

8

il

1T 2 3 4 5 6 7 8 9 10 1M 12 13 14 15 16

PLILLLELELLETE

Observation

.8 f

i0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16

Observation: the slow calls are get slower, but

they also get rarer.
Twice as bad, but half as frequent.
Their increased cost is spread over a larger gap.

On the other hand...

def bar(i):
if is_divisible_by_five(i):
for j in range(i):
print(”0Oh no!")
else:
print(”Phew!"”)

for i in range(n):
foo(i)

Observation

:

i0 1 2 3 4 5 6 7 8 910 1 12 13 14 15 16

Observation: the slow calls are get slower, but

are not getting rarer.
Will lead to ©(n) amortized cost, instead of ©(1).

DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 2 Part 4

Growth Strategies for Dynamic Arrays

Amortized Analysis of Dynamic
Arrays

What is the amortized cost of append on a
dynamic array?

It depends on the growth strategy.

Attempt #1: Linear Growth

Initially allocate S slots.
When we run out, grow physical size to 2S slots.
When we run out again, physical size to 3S.

etc.

Example

HEEEEEEEEEE U_g

Analysis

Every Sth append is slow, taking time O(R), where
kR is the number of elements stored.

All other appends are fast, taking time ©(1).

for i in range(n):
dynamic_array.append(”something”)

i:0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16

Attempt #1: Linear Growth

for i in range(n):
dynamic_array.append(”something”)

]

i:0 1 2 3 4 5 6 7 8 910 1 12 13 14 15

-
[«)]

The slow calls are getting worse (linearly), but

are not getting rarer.
This will lead to a linear amortized cost.

Attempt #2: Geometric Growth
Initially allocate S slots.

When we run out, double the physical size.
When we run out again, double it again.

etc.

Example

for i in range(n):
dynamic_array.append(”something”)

Informal Analysis

The slow calls are getting slower (geometrically),
but are getting rarer!

This will lead to an amortized cost of O(1).

In general...
We have used a growth factor of y = 2.
In general, we can use any y > 1.

Next up: a formal analysis of the amortized cost
for a general y.

DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 2 Parth

Formal Analysis of Dynamic Arrays

Amortized Time Complexity

The amortized time for an append is:

total time for n appends
Tamort(n) = n

We'll see that T,,,«(n) = ©(1) when geometric
resizing is used with any growth factory > 1.

Amortized Analysis

total time for n appends

total time for non-growing appends

+
total time for growing%ppends

Counting Growing Appends

Want to calculate time taken by growing
appends.

First: how many appends caused a resize?
B: initial physical size
y: growth factor

Counting Growing Appends
Suppose initial physical size is B =512,and y = 2

Resizes occur on append #:

512,1024, 2048, 4096, ...

In general, resizes occur on append #:

BY°, By, By?, By?, ...

Counting Growing Appends

In a sequence of n appends, how many caused
the physical size to grow?

Simplification: Assume n is such that nth append
caused a resize. Then, for some x € {0, 1, 2, ...}:

n = By*

If x = 0 there was 1 resize; if x = 1 there were 2;
etc.

Counting Growing Appends

Solving for x:

Check: without assumption, x = [logy %J

Number of resizes is [logy %J +1

Counting Growing Appends

Number of resizes is [logy %J + 1

Check withy =2, B =512, n = 400
Correct # of resizes: 0

Check withy =2,B=512,n=1100

Correct # of resizes: 2

Time of Growing Appends

How much time was taken across all appends
that caused resizes?

Assumption: resizing an array with physical size R
takes time ck = O(R).
C is a constant that depends on y.

Time of Growing Appends
Time for first resize: .
Time for second resize: cyB.
Time for third resize: cy?p.
Time for jth resize: cy/='B.

This is a geometric progression.

Time of Growing Appends
Time for jth resize: cy/='B.
Suppose there are r resizes.

Total time:

Recall: Geometric Sum

From before:

1- n+1
Zﬂ?: 1fr

n
k=0

Time of Growing Appends

Total time:

I r+1

. 1-
By V=Bt
=0 Y

Time of Growing Appends

Remember: in n appends there arer = [logV%J + 1
resizes.

Total time:

Amortized Analysis

total time for n appends

total time for non-growing appends

+

O(n) « total time for growing appends

Time of Non-Growing Appends

In a sequence of n appends, how many are
non-growing?

n—([logY%JH):O(n)

Time for one such append: ©(1).

Total time: ©(n) x ©(1) = ©(n).

Amortized Analysis

total time for n appends

o(n) « total time for non-growing appends
+

o(n) « total time for growing appends

Amortized Time Complexity

The amortized time for an append is:

total time for n appends
Tamort(n) = n

O(n)

n

- 0(1)

z 2 2 2/
Dynamic Array Ti mg Complexities

Retrieve kth element: ©(1)

Append/pop element at end:
(1) best case
O(n) worst case (where n = current size)
O(1) amortized

Insert/remove in middle: O(n)
May or may not need resize, still O(n)!

DPSC /70

DATA STRUCTURES § ALLORITHMS
Lecture 2 Part 6

Practicalities

Advantages
Great cache performance (it's an array).
Fast access.

Don’t need to know size in advance of allocation.

Downsides
Wasted memory.

Expensive deletion in middle.

Implementations
Python: list
C++: std: :vector

Java: Arraylist

(notebook posted on dsc190.com)

Cg , " 5Mlm" S ?A,’Pahﬁa-wl

Why do we need np.array? Python’s list is a dy-
namic array, isn't that better?

In defense of np.array
Memory savings are one reason.

Bigger reason: using Python’s 1ist to store
numbers does not have good cache performance.

HEEENNNERRREA PN R

‘L N
@ \\® ,',,(.D«\:

