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Recap



Arrays vs. Linked Lists

Last time, we reviewed two ways of storing
sequential data: arrays and linked lists.

Arrays support constant time access, but are
slow to grow. aN[H'L]

Linked lists are fast to grow but slow to access.



Motivation
Can we have the best of both worlds?
O(1) time access like an array.
O(1) time append like a linked list.

Yes! (sort of)
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Dynamic Arrays



Why are arrays slow to grow?

Appending to an array requires:’
allocating a new chunk of memory; and
copying the entire array to the new chunk.

Thus each append takes O(R) time, where kR is

"There are some subtleties here. See: https://youtu.be/536UTEdvDSk
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The Idea

Allocate a larger underlying array than initially
needed.
Some “empty space” at end of array to “grow into”.

Only need to allocate more memory when we run
out of empty space.
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Physical Size vs. Logical Size
Our array will have two “sizes”.

Physical size: the size of the underlying array.
l.e., the number of “slots” that have been allocated.

Logical size: the number of elements currently ?)

being stored.
l.e., the number of “slots” being used.

EERRCEPEREERD IEEREE.




Appending

If there is empty space (logical < physical), just
insert the element into first empty slot in ©(1)
time (fast).

If there is no empty space (logical = physical),
grow the underlying array in ©(R) time, then
insert the element (slow).
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Intuition
Most appends are fast: (1) time.
Some appends are slow: O(R) time.

If slow appends are rare enough, the “typical”
time of an append will be close to O(1).



Dynamic Arrays
This data structure is called a dynamic array.

Fast access (it's just an array), and fast appends
(most of the time).

The big remaining question: how much do we
grow the array when we run out of space?

The right strategy makes all the difference.



“Typical” Time

Our goal is to design a strategy to minimize the
“typical” time of an append.

What do we mean by “typical”, exactly?

Up next, a new way of measuring “typical” time:
amortized time complexity.
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Goal

Measure the “typical” time taken by an operation:
most of the time, the operation is fast;
but sometimes, the operation is slow.

|dea: “spread” the cost of the slow operations
over the many fast operations.



Amortization

Amortization means spreading out the cost of
something over time.

E.g., buying a car:
Up-front cost: $30,000
Amortized cost over 60 months:
$500/month



Example: UCSD Parking

Parking costs $7 per day (for faculty).

Every 100 days, you forget to pay and get a $80
ticket.

The “amortized cost” of parking is:

total cost _ $700 + $80

total days 100 37.80




Amortized Analysis

Amortized analysis is a way of measuring the
“typical” time of an operation in a sequence.

Idea: spread the cost of the slow operations over
the many fast operations.

Approach: compute total time of operations,
divide by number of operations.?

ZRelated to average case analysis, but not quite the same.



Computing Amortized Time

The amortized time of n operations is:

total time taken by all operations
Tamort(N) = n

An equivalent strategy is to separately analyze
the “fast” and “slow” operations (ops):

(total time of fast ops) + (total time of slow ops)
n

Tamort(n) =




Example: foo

def foo(i):
if is_power_of_two(i):
for j in range(i): <
L
print(”0Oh no!") @( )
else:

print(”Phew!"”) — > (:7(C>

for i in range(n):
foo(i)



def foo(i):
if is_power_of_two(i):
for j in range(i):
print(”0h no!")
else:
print(”Phew!"”)

for i in range(n):
foo(i)
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Example: foo

Start by computing total
def foo(i): time taken by “slow” calls.
if is_power_of_two(i):
for j in range(i):

orint(”oh no!”) slow call # | # iters.
else:
: n n 1 1
int("Phew!
print( w!™) 5 7
for i in range(n): 3 Y

foo(1i)
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Example: foo

Start by computing total
def foo(i): time taken by “slow” calls.
if is_power_of_two(i):
for j in range(i):

print(”0h no!”) slow call # | # iters.
else: ; ;
rint("”"Phew!”
print( w!™) , )
for i in range(n):
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foo(1i)




def foo(i):
if is_power_of_two(i):
for j in range(i):
print(”0h no!")
else:
print(”Phew!”)

for i in range(n):
foo(1i)

Out of the n calls to foo, (roughly) how many are
slow? 08 ™
L




Example: foo

slow call # \ # iters.

1 1
2

3 4

k 2k.—1

The total time taken over
all slow calls is:

14244+, 42014 421080

This is a geometric sum.



Recall: Geometric Sum

A geometric sum is a sum of the form:

n )
1+r+r2+...+rk'1+...+r”=Zrk v
12 +948406 =%

There is a formula for this sum:

i k. rn+‘| f"/Z_ Yl"q
r
k=0 )-2° 2%-37
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Example: foo

Recall our geometric sum for the total time
taken by the slow calls:

log,(n)-1
1+2+4+ . +28T 4 4 2[°g2(n)_1 = 2R
k=0

Using the formula on the previous slide with
r=2and n = log,(n) - 1, we get:

log,(n)-1 1 — 9logy(n)

k=2~ -2& _q1-pn_1=0(n)
£ 1-2



Example: foo

def foo(i):
if is_power_of_two(i):
for j in range(i):
print(”0h no!")
else:
print(”Phew!"”)

for i in range(n):
foo(1i)

The total time taken by
the slow calls is ©(n).



def foo(i):
if is_power_of_two(i):
for j in range(i):
print(”0h no!")
else:
print(”Phew!”)

for i in range(n):
foo(i)

What is the total time taken by all of the fast calls

to foo? Q(n)




Example: foo

def foo(i):
if is_power_of_two(i):
for j in range(i):
print(”0h no!")
else:
print(”Phew!”)

for i in range(n):
foo(i)

Out of the n calls to foo,
O(log, n) calls are “slow”.

So O(n - logn) = ©(n) calls
are “fast”.

Each fast call takes ©(1)
time.

Total time taken by fast
calls: ©(n) x ©(1) = O(n).



Example: foo

Amortized time:

(total time of fast calls) + (total time of slow calls)
Tamort(n) = n

0(n) + O(n)

The amortized time of foo is (1) per call.



In other words...
Some calls to foo are fast, taking ©(1).
Some calls to foo are slow, taking ©(n).

But the slow calls are rare enough that the
amortized (“typical”) cost per call is ©(1).



Another View

The cost of the slow iterations can be “spread
over” the previous fast calls.

This works because the slow calls are rare
enough.
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Observation

.8 f

i0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16

Observation: the slow calls are get slower, but

they also get rarer.
Twice as bad, but half as frequent.
Their increased cost is spread over a larger gap.



On the other hand...

def bar(i):
if is_divisible_by_five(i):
for j in range(i):
print(”0Oh no!")
else:
print(”Phew!"”)

for i in range(n):
foo(i)



Observation

:

i0 1 2 3 4 5 6 7 8 910 1 12 13 14 15 16

Observation: the slow calls are get slower, but

are not getting rarer.
Will lead to ©(n) amortized cost, instead of ©(1).
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Growth Strategies for Dynamic Arrays



Amortized Analysis of Dynamic
Arrays

What is the amortized cost of append on a
dynamic array?

It depends on the growth strategy.



Attempt #1: Linear Growth

Initially allocate S slots.
When we run out, grow physical size to 2S slots.
When we run out again, physical size to 3S.

etc.



Example
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Analysis

Every Sth append is slow, taking time O(R), where
kR is the number of elements stored.

All other appends are fast, taking time ©(1).



for i in range(n):
dynamic_array.append(”something”)

i:0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16



Attempt #1: Linear Growth

for i in range(n):
dynamic_array.append(”something”)

]

i:0 1 2 3 4 5 6 7 8 910 1 12 13 14 15

-
[«)]

The slow calls are getting worse (linearly), but

are not getting rarer.
This will lead to a linear amortized cost.



Attempt #2: Geometric Growth
Initially allocate S slots.

When we run out, double the physical size.
When we run out again, double it again.

etc.



Example




for i in range(n):
dynamic_array.append(”something”)



Informal Analysis

The slow calls are getting slower (geometrically),
but are getting rarer!

This will lead to an amortized cost of O(1).



In general...
We have used a growth factor of y = 2.
In general, we can use any y > 1.

Next up: a formal analysis of the amortized cost
for a general y.
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Formal Analysis of Dynamic Arrays



Amortized Time Complexity

The amortized time for an append is:

total time for n appends
Tamort(n) = n

We'll see that T,,,«(n) = ©(1) when geometric
resizing is used with any growth factory > 1.



Amortized Analysis

total time for n appends

total time for non-growing appends

+
total time for growing%ppends



Counting Growing Appends

Want to calculate time taken by growing
appends.

First: how many appends caused a resize?
B: initial physical size
y: growth factor



Counting Growing Appends
Suppose initial physical size is B =512,and y = 2

Resizes occur on append #:

512,1024, 2048, 4096, ...

In general, resizes occur on append #:

BY°, By, By?, By?, ...



Counting Growing Appends

In a sequence of n appends, how many caused
the physical size to grow?

Simplification: Assume n is such that nth append
caused a resize. Then, for some x € {0, 1, 2, ...}:

n = By*

If x = 0 there was 1 resize; if x = 1 there were 2;
etc.



Counting Growing Appends

Solving for x:

Check: without assumption, x = [logy %J

Number of resizes is [logy %J +1



Counting Growing Appends

Number of resizes is [logy %J + 1

Check withy =2, B =512, n = 400
Correct # of resizes: 0

Check withy =2,B=512,n=1100

Correct # of resizes: 2



Time of Growing Appends

How much time was taken across all appends
that caused resizes?

Assumption: resizing an array with physical size R
takes time ck = O(R).
C is a constant that depends on y.



Time of Growing Appends
Time for first resize: .
Time for second resize: cyB.
Time for third resize: cy?p.
Time for jth resize: cy/='B.

This is a geometric progression.



Time of Growing Appends
Time for jth resize: cy/='B.
Suppose there are r resizes.

Total time:



Recall: Geometric Sum

From before:

1- n+1
Zﬂ?: 1fr

n
k=0



Time of Growing Appends

Total time:

I r+1

. 1-
By V=Bt
=0 Y




Time of Growing Appends

Remember: in n appends there arer = [logV%J + 1
resizes.

Total time:




Amortized Analysis

total time for n appends

total time for non-growing appends

+

O(n) « total time for growing appends



Time of Non-Growing Appends

In a sequence of n appends, how many are
non-growing?

n—([logY%JH):O(n)

Time for one such append: ©(1).

Total time: ©(n) x ©(1) = ©(n).



Amortized Analysis

total time for n appends

o(n) « total time for non-growing appends
+

o(n) « total time for growing appends



Amortized Time Complexity

The amortized time for an append is:

total time for n appends
Tamort(n) = n

O(n)

n

- 0(1)



z 2 2 2/
Dynamic Array Ti mg Complexities

Retrieve kth element: ©(1)

Append/pop element at end:
(1) best case
O(n) worst case (where n = current size)
O(1) amortized

Insert/remove in middle: O(n)
May or may not need resize, still O(n)!
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Practicalities



Advantages
Great cache performance (it's an array).
Fast access.

Don’t need to know size in advance of allocation.



Downsides
Wasted memory.

Expensive deletion in middle.



Implementations
Python: list
C++: std: :vector

Java: Arraylist



(notebook posted on dsc190.com)
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Why do we need np.array? Python’s list is a dy-
namic array, isn't that better?




In defense of np.array
Memory savings are one reason.

Bigger reason: using Python’s 1ist to store
numbers does not have good cache performance.
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