## Arrays vs. Linked Lists

- Last time, we reviewed two ways of storing sequential data: arrays and linked lists.
- Arrays support constant time access, but are slow to grow.

$$
\operatorname{arr}[42]
$$

- Linked lists are fast to grow but slow to access.


## Motivation

- Can we have the best of both worlds?
- $\Theta(1)$ time access like an array.
- $\Theta(1)$ time append like a linked list.
- Yes! (sort of)

DSC 190 Lecture 2 | Part

## Why are arrays slow to grow?

- Appending to an array requires: ${ }^{1}$

1. allocating a new chunk of memory; and
2. copying the entire array to the new chunk.
> Thus each append takes $\Theta(k)$ time, where $k$ is current number of elements stored.


[^0]$$
4,7,3
$$

The Idea
Allocate a larger underlying array than initially needed.

- Some "empty space" at end of array to "grow into".

Only need to allocate more memory when we run out of empty space.
$\square$ [473/0
$9129]$ $\square$

## Physical Size vs. Logical Size

- Our array will have two "sizes".
- Physical size: the size of the underlying array.
- I.e., the number of "slots" that have been allocated.
- Log̣ical size: the number of elements currently 3 being stored.
- I.e., the number of "slots" being used.



## Appending

- If there is empty space (logical < physical), just insert the element into first empty slot in $\Theta$ (1) time (fast).
- If there is no empty space (logical = physical), grow the underlying array in $\Theta(k)$ time, then insert the element (slow).



## Intuition

- Most appends are fast: $\Theta(1)$ time.
- Some appends are slow: $\Theta(k)$ time.
- If slow appends are rare enough, the "typical" time of an append will be close to $\Theta(1)$.


## Dynamic Arrays

- This data structure is called a dynamic array.
- Fast access (it's just an array), and fast appends (most of the time).
- The big remaining question: how much do we grow the array when we run out of space?
- The right strategy makes all the difference.


## "Typical" Time

- Our goal is to design a strategy to minimize the "typical" time of an append.
- What do we mean by "typical", exactly?
- Up next, a new way of measuring "typical" time: amortized time complexity.

DSC 190 Lecture $2 \mid$ Part 3 mortized Analysis

## Goal

- Measure the "typical" time taken by an operation:
- most of the time, the operation is fast;
- but sometimes, the operation is slow.
- Idea: "spread" the cost of the slow operations over the many fast operations.


## Amortization

- Amortization means spreading out the cost of something over time.
- E.g., buying a car:
- Up-front cost: \$30,000
- Amortized cost over 60 months: \$500/month


## Example: UCSD Parking

- Parking costs $\$ 7$ per day (for faculty).
- Every 100 days, you forget to pay and get a $\$ 80$ ticket.
- The "amortized cost" of parking is:

$$
\frac{\text { total cost }}{\text { total days }}=\frac{\$ 700+\$ 80}{100}=\$ 7.80
$$

## Amortized Analysis

- Amortized analysis is a way of measuring the "typical" time of an operation in a sequence.
- Idea: spread the cost of the slow operations over the many fast operations.
- Approach: compute total time of operations, divide by number of operations. ${ }^{2}$
${ }^{2}$ Related to average case analysis, but not quite the same.


## Computing Amortized Time

- The amortized time of $n$ operations is:

$$
T_{\text {amort }}(n)=\frac{\text { total time taken by all operations }}{n}
$$

- An equivalent strategy is to separately analyze the "fast" and "slow" operations (ops):

$$
T_{\text {amort }}(n)=\frac{(\text { total time of fast ops })+\text { (total time of slow ops) }}{n}
$$

## Example: foo

def foo(i):
if is_power_of_two(i):
for $\left.\begin{array}{l}\text { jin range(i): } \\ \text { print ("Oh no!") }\end{array}\right\} \bigoplus(i)$
else:
print("Phew!") $\quad \rightarrow(1)$
for i in range(n): foo(i)

```
def foo(i):
        if is_power_of_two(i):
            for j in rānge(i):
        print("Oh no!")
        else:
            print("Phew!")
for i in range(n):
        foo(i)
```


## Example: foo

```
def foo(i):
        if is_power_of_two(i):
        for j in range(i):
        print("Oh no!")
    else:
        print("Phew!")
for i in range(n):
        foo(i)
```

- Start by computing total time taken by "slow" calls.

| slow call \# | \# iters. |
| :---: | :---: |
| 1 | 1 |
| 2 | 2 |
| 3 | 4 |
| $\vdots$ | $\vdots k-1$ |
| $k$ | $2^{2}$ |

## Example: foo

```
def foo(i):
    if is_power_of_two(i):
        for j in rānge(i):
        print("Oh no!")
    else:
        print("Phew!")
for i in range(n):
        foo(i)
```

- Start by computing total time taken by "slow" calls.

| slow call \# | \# iters. |
| :---: | :---: |
| 1 | 1 |
| 2 | 2 |
| 3 | 4 |
| $\vdots$ | $\vdots$ |
| $k$ | $2^{k-1}$ |

```
def foo(i):
    if is_power_of_two(i):
        for j iñ rānge(i):
        print("Oh no!")
    else:
        print("Phew!")
for i in range(n):
    foo(i)
```


## Exercise

Out of the $n$ calls to foo, (roughly) how many are slow?
$\log _{2} n$

## Example: foo

| slow call \# | \# iters. |  |
| :---: | :---: | :--- |
| 1 | 1 | The total time taken over <br> 2 |
| all slow calls is: |  |  |
| 3 | 4 | $1+2+4+\ldots+2^{k-1}+\ldots+2^{\log _{2}(n)-1}$ |
| $\vdots$ | $\vdots$ |  |
| $\log _{2} n$ | $2^{\left(\log _{2} n\right)-1}$ |  |

Recall: Geometric Sum

A geometric sum is a sum of the form:

$$
\begin{aligned}
& 1+r+r^{2}+\ldots+r^{k-1}+\ldots+r^{n}=\sum_{k=0}^{n} r^{k} \quad 2^{n-1=31} \\
& 1+2+4+8+16=31
\end{aligned}
$$

There is a formula for this sum:

$$
\sum_{k=0}^{n} r^{k}=\frac{1-r^{n+1}}{1-r} \quad \begin{aligned}
& r=2 \quad n=4 \\
& \frac{1-2^{5}}{1-2}
\end{aligned} 2^{5}=32
$$

## Example: foo

- Recall our geometric sum for the total time taken by the slow calls:

$$
1+2+4+\ldots+2^{k-1}+\ldots+2^{\log _{2}(n)-1}=\sum_{k=0}^{\log _{2}(n)-1} 2^{k}
$$

- Using the formula on the previous slide with $r=2$ and $n=\log _{2}(n)-1$, we get:

$$
\sum_{k=0}^{\log _{2}(n)-1} 2^{k}=\frac{1-2^{\log _{2}(n)}}{1-2}=2^{\log _{2}(n)}-1=n-1=\Theta(n)
$$

## Example: foo

```
def foo(i):
    if is_power_of_two(i):
        for j in rānge(i):
        print("Oh no!")
    else:
        print("Phew!")
for i in range(n):
    foo(i)
for i in range(n): foo(i)
```

- The total time taken by the slow calls is $\Theta(n)$.

```
def foo(i):
    if is_power_of_two(i):
        for j in range(i):
        print("Oh no!")
    else:
        print("Phew!")
for i in range(n):
    foo(i)
```


## Exercise

What is the total time taken by all of the fast calls to foo?

## Example: foo

- Out of the $n$ calls to foo, $\Theta\left(\log _{2} n\right)$ calls are "slow".
def foo(i):
if is_power_of_two(i): for $j$ in range(i): print("Oh no!")
else:
print("Phew!")
for i in range(n): foo(i)
- So $\Theta(n-\log n)=\Theta(n)$ calls are "fast".
- Each fast call takes $\Theta(1)$ time.
- Total time taken by fast calls: $\Theta(n) \times \Theta(1)=\Theta(n)$.


## Example: foo

- Amortized time:

$$
\begin{aligned}
T_{\text {amort }}(n) & =\frac{\text { (total time of fast calls) }+ \text { (total time of slow calls) }}{n} \\
& =\frac{\Theta(n)+\Theta(n)}{n} \\
& =\Theta(1)
\end{aligned}
$$

- The amortized time of foo is $\Theta(1)$ per call.


## In other words...

- Some calls to foo are fast, taking $\Theta(1)$.
- Some calls to foo are slow, taking $\Theta(n)$.
- But the slow calls are rare enough that the amortized ("typical") cost per call is $\Theta(1)$.


## Another View

- The cost of the slow iterations can be "spread over" the previous fast calls.
- This works because the slow calls are rare enough.




#  

## Observation



- Observation: the slow calls are get slower, but they also get rarer.
- Twice as bad, but half as frequent.
- Their increased cost is spread over a larger gap.


## On the other hand...

def bar(i): if is_divisible_by_five(i):
for $j$ in range(i): print("Oh no!")
else:
print("Phew!")
for $i$ in range(n): foo(i)

## Observation



- Observation: the slow calls are get slower, but are not getting rarer.
- Will lead to $\Theta(n)$ amortized cost, instead of $\Theta(1)$.

$$
\text { DST } 190
$$

Growth Strategies for Dynamic Arrays

## Amortized Analysis of Dynamic Arrays

- What is the amortized cost of append on a dynamic array?
- It depends on the growth strategy.


## Attempt \#1: Linear Growth

- Initially allocate $S$ slots.
- When we run out, grow physical size to $2 S$ slots.
- When we run out again, physical size to $3 S$.
> etc.


## Example



## Analysis

- Every Sth append is slow, taking time $\Theta(k)$, where $k$ is the number of elements stored.
- All other appends are fast, taking time $\Theta(1)$.

```
for i in range(n):
    dynamic_array.append("something")
```



## Attempt \#1: Linear Growth



- The slow calls are getting worse (linearly), but are not getting rarer.
- This will lead to a linear amortized cost.


## Attempt \#2: Geometric Growth

- Initially allocate $S$ slots.
- When we run out, double the physical size.
- When we run out again, double it again.
- etc.


## Example


for $i$ in range(n): dynamic_array.append("something")


## Informal Analysis

- The slow calls are getting slower (geometrically), but are getting rarer!
- This will lead to an amortized cost of $\Theta(1)$.


## In general...

- We have used a growth factor of $\gamma=2$.
$>$ In general, we can use any $\gamma>1$.
- Next up: a formal analysis of the amortized cost for a general $\gamma$.

DSC 190 Lecture $2 \mid$ Part 5
Formal Analysis of Dynamic Arrays

## Amortized Time Complexity

- The amortized time for an append is:

$$
T_{\text {amort }}(n)=\frac{\text { total time for } n \text { appends }}{n}
$$

- We'll see that $T_{\text {amort }}(n)=\Theta(1)$ when geometric resizing is used with any growth factor $\gamma>1$.


## Amortized Analysis

total time for $n$ appends
=
total time for non-growing appends
$+$
total time for growing appends

## Counting Growing Appends

- Want to calculate time taken by growing appends.
- First: how many appends caused a resize?
- $\beta$ : initial physical size
- $\gamma$ : growth factor


## Counting Growing Appends

- Suppose initial physical size is $\beta=512$, and $\gamma=2$
- Resizes occur on append \#:

$$
512,1024,2048,4096, \ldots
$$

- In general, resizes occur on append \#:

$$
\beta \gamma^{0}, \beta \gamma^{1}, \beta \gamma^{2}, \beta \gamma^{3}, \ldots
$$

## Counting Growing Appends

- In a sequence of $n$ appends, how many caused the physical size to grow?
- Simplification: Assume $n$ is such that $n$th append caused a resize. Then, for some $x \in\{0,1,2, \ldots\}$ :

$$
n=\beta \gamma^{x}
$$

- If $x=0$ there was 1 resize; if $x=1$ there were 2 ; etc.


## Counting Growing Appends

- Solving for $x$ :

$$
x=\log _{\gamma} \frac{n}{\beta}
$$

- Check: without assumption, $x=\left\lfloor\log _{\gamma} \frac{n}{\beta}\right\rfloor$
$\Rightarrow$ Number of resizes is $\left\lfloor\log _{\gamma} \frac{n}{\beta}\right\rfloor+1$


## Counting Growing Appends

- Number of resizes is $\left\lfloor\log _{\gamma} \frac{n}{\beta}\right\rfloor+1$
- Check with $\gamma=2, \beta=512, n=400$
- Correct \# of resizes: 0
- Check with $\gamma=2, \beta=512, n=1100$
- Correct \# of resizes: 2


## Time of Growing Appends

- How much time was taken across all appends that caused resizes?
- Assumption: resizing an array with physical size $k$ takes time $c k=\Theta(k)$.
$\downarrow c$ is a constant that depends on $\gamma$.


## Time of Growing Appends

- Time for first resize: $\ell \beta$.
- Time for second resize: $c \gamma \beta$.
- Time for third resize: $c \gamma^{2} \beta$.
- Time for $j$ th resize: $c \gamma^{j-1} \beta$.
- This is a geometric progression.


## Time of Growing Appends

Time for $j$ th resize: $c \gamma^{j-1} \beta$.

- Suppose there are $r$ resizes.
- Total time:

$$
c \beta \sum_{j=1}^{r} \gamma^{j-1}=c \beta \sum_{j=0}^{r} \gamma^{j}
$$

Recall: Geometric Sum

From before:

$$
\sum_{k=0}^{n} r^{k}=\frac{1-r^{n+1}}{1-r}
$$

## Time of Growing Appends

Total time:

$$
c \beta \sum_{j=0}^{r} \gamma^{j}=c \beta \frac{1-\gamma^{r+1}}{1-\gamma}
$$

## Time of Growing Appends

- Remember: in $n$ appends there are $r=\left\lfloor\log _{\gamma} \frac{n}{\beta}\right\rfloor+1$ resizes.

Total time:

$$
\begin{aligned}
c \beta \frac{1-\gamma^{\gamma+1}}{1-\gamma} & =c \beta \frac{1-\gamma^{\left[\log _{\gamma} \frac{n}{\beta}+2\right.}}{1-\gamma} \\
& =\Theta(n)
\end{aligned}
$$

## Amortized Analysis

total time for $n$ appends =
total time for non-growing appends
$+$
$\Theta(n) \quad \leftarrow$ total time for growing appends

## Time of Non-Growing Appends

- In a sequence of $n$ appends, how many are non-growing?

$$
\left.n-\left(\log _{\gamma} \frac{n}{\beta}\right\rfloor+1\right)=\Theta(n)
$$

- Time for one such append: $\Theta(1)$.
- Total time: $\Theta(n) \times \Theta(1)=\Theta(n)$.


## Amortized Analysis

```
total time for n appends
=
\Theta(n)}\leftarrow\mathrm{ total time for non-growing appends
O(n)}\quad\leftarrow\mathrm{ total time for growing appends
```


## Amortized Time Complexity

The amortized time for an append is:

$$
\begin{aligned}
T_{\text {amort }}(n) & =\frac{\text { total time for } n \text { appends }}{n} \\
& =\frac{\Theta(n)}{n} \\
& =\Theta(1)
\end{aligned}
$$

## $523 n^{4}$ <br> Dynamic Array Time Complexities

- Retrieve $k$ th element: $\Theta(1)$
- Append/pop element at end:
- $\Theta(1)$ best case
- $\Theta(n)$ worst case (where $n=$ current size)
- $\Theta(1)$ amortized
- Insert/remove in middle: $O(n)$
- May or may not need resize, still $O(n)$ !

DST 190 Lecture $2 \mid$ Part 6 Practicalities

## Advantages

- Great cache performance (it's an array).
- Fast access.
- Don't need to know size in advance of allocation.


## Downsides

Wasted memory.

Expensive deletion in middle.

## Implementations

Python: list

C++: std:: vector

Java: ArrayList

## (notebook posted on dsc190.com)

## [3, "justin", pdDataframe]

## Exercise

Why do we need np.array? Python's list is a dynamic array, isn't that better?

## In defense of np . array

- Memory savings are one reason.
- Bigger reason: using Python's list to store numbers does not have good cache performance.



[^0]:    ${ }^{1}$ There are some subtleties here. See: https://youtu.be/5J6UlEdvDSk

