DST 190 Lecture 1 | Part
Welcome!

## Advanced Data Structures and Algorithms

(for data science)

- Third time being taught.
- Modeled (partly) after CSE 100/101.
- But with more data science flavor.


## Roadmap

- Advanced Data Structures
- Dynamic Arrays
- AVL Trees
- Heaps
- Disjoint Set Forests
- Nearest Neighbor Queries
- KD-Trees
- Locality Sensitive Hashing


## Roadmap

- Strings
- Tries and Suffix Trees
- Knuth-Morris-Pratt and Rabin-Karp string search
- Algorithm Design
- Divide and Conquer
- Greedy Algorithms
- Dynamic Programming (Viterbi Algorithm)
- Backtracking, Branch and Bound
- Linear Time Sorting; Sort with Noisy Comparator


## Roadmap

- Sketching and Streaming
- Count-min-sketch
- Bloom filters
- Reservoir Sampling?
- Theory of Computation
- NP-Completeness and NP-Hardness
- Computationally-hard problems in ML/DS


## Prerequisite Knowledge

- Python
- Basic Data Structures and Algorithms
- DSC 30, DSC 40B


## Syllabus

All course materials can be found at dsc190.com.

DSC
data structures \& ALgorititms
Lecture $1 \mid$ Part 2
Review of Time Complexity Analysis

## Time Complexity Analysis

- Determine efficiency of code without running it.
- Idea: find a formula for time taken as a function of input size.


## Advantages of Time Complexity

1. Doesn't depend on the computer.
2. Reveals which inputs are slow, which are fast.
3. Tells us how algorithm scales.

## Counting Operations

- Abstraction: certain basic operations take constant time, no matter how large the input data set is.
- Example: addition of two integers, assigning a variable, etc.
- Idea: count basic operations



## Theta Notation, Informally

- $\Theta(\cdot)$ forgets constant factors, lower-order terms.

$$
5 n^{3}+3 n^{2}+42=\theta\left(n^{3}\right)
$$

## Theta Notation, Informally

$$
\begin{gathered}
f(n)=\Theta(g(n)) \text { if } f(n) \text { "grows like" } g(n) . \\
5 n^{3}+3 n^{2}+42=\Theta\left(n^{3}\right)
\end{gathered}
$$

$$
2^{n}: \frac{n}{j} \Theta\left(3^{n}\right)
$$

Theta Notation Examples

$$
\begin{aligned}
& 4 n^{2}+3 n-20=\theta\left(n^{2}\right) \\
& 3 n+\sin (4 \pi n)=\theta(n) \\
& =2^{n}+100 n=\theta\left(2^{n}\right) \\
& 2^{n+1}=\Theta\left(2^{n}\right) \quad 2^{n+1}=2 \cdot 2^{n}
\end{aligned}
$$

Definition
We write $f(n)=\Theta(g(n))$ if there are positive constans $N, c_{1}$ and $c_{2}$ such that for all $n \geq N$ :

$$
c_{1} \cdot g(n) \leq f(n) \leq c_{2} \cdot g(n)
$$



## Main Idea

If $f(n)=\Theta(g(n))$, then $f$ can be "sandwiched" between copies of $g$ when $n$ is large.

## Other Bounds

- $f=\Theta(g)$ means that $f$ is both upper and lower bounded by factors of $g$.
- Sometimes we only have (or care about) upper bound or lower bound.
- We have notation for that, too.


## Big-O Notation, Informally

- Sometimes we only care about upper bound.
- $f(n)=O(g(n))$ if $f(n)$ "grows at most as fast" as $g(n)$.
- Examples:

$$
\begin{aligned}
& 4 n^{2}=O\left(n^{100}\right) \\
> & 4 n^{2}=O\left(n^{3}\right) \\
> & 4 n^{2}=O\left(n^{2}\right) \text { and } 4 n^{2}=\Theta\left(n^{2}\right)
\end{aligned}
$$

## Definition

We write $f(n)=O(g(n))$ if there are positive constants $N$ and $c$ such that for all $n \geq N$ :

$$
f(n) \leq c \cdot g(n)
$$



- Sometimes we only care about lower bound.
- Intuitively: $f(n)=\Omega(g(n))$ if $f(n)$ "grows at least as fast" as $g(n)$.
- Examples:

$$
\begin{aligned}
& 4 n^{100}=\Omega\left(n^{5}\right) \\
> & 4 n^{2}=\Omega(n) \\
> & 4 n^{2}=\Omega\left(n^{2}\right) \text { and } 4 n^{2}=\Theta\left(n^{2}\right)
\end{aligned}
$$

## Definition

We write $f(n)=\Omega(g(n))$ if there are positive constants $N$ and $c$ such that for all $n \geq N$ :

$$
c_{1} \cdot g(n) \leq f(n)
$$



## $n^{2}+n^{3}=\theta\left(n^{3}\right)$

## Sums of Theta

$$
\begin{aligned}
n^{2} & n^{n^{3}} \\
\text { If } f_{1}(n)=\Theta\left(g_{1}(n)\right) \text { and } f & f_{2}(n)=\Theta\left(g_{2}(n)\right) \text {, then } \\
f_{1}(n)+f_{2}(n) & =\Theta\left(g_{1}(n)+g_{2}(n)\right) \\
& =\Theta\left(\max \left(g_{1}(n), g_{2}(n)\right)\right)
\end{aligned}
$$

- Useful for sequential code.

Products of Theta
If $f_{1}(n)=\Theta\left(g_{1}(n)\right)$ and $f_{2}(n)=\theta\left(g_{2}(n)\right)$, then

$$
\begin{gathered}
f_{1}(n) \cdot f_{2}(n)=\Theta\left(g_{1}(n) \cdot g_{2}(n)\right) \\
n^{2} \times n^{3}=\Theta\left(n^{2} \times n^{3}\right)=\Theta\left(n^{5}\right)
\end{gathered}
$$

$$
\begin{aligned}
& f_{1} \times f_{2}=\Theta\left(n^{5}\right) \\
& S_{\text {Example }} \\
& \Theta\left(n^{2}\right) \Theta\left(n^{3}\right) \\
& \text { def foo (n): } \\
& \text { for i in range }(3 * n+4,5 n * * 2-2 * n+5): \\
& \text { for j in range }(500 * n, n * * 3): \\
& \quad \operatorname{print}(i, j)
\end{aligned}
$$

## Linear Search

Given: an array arr of numbers and a target $t$.
$>$ Find: the index of $t$ in arr, or None if it is missing.
def linear_search(arr, t): for $i, x$ in enumerate(arr):
if $x==t:$
return i
return None

## Exercise

What is the time complexity of linear_search?

## The Best Case

- When t is the very first element.
$>$ The loop exits after one iteration.
- $\Theta(1)$ time?


## The Worst Case

When $t$ is not in the array at all.

- The loop exits after $n$ iterations.
$\Rightarrow \Theta(n)$ time?


## Time Complexity

- linear_search can take vastly different amounts of time on two inputs of the same size.
- Depends on actual elements as well as size.
- There is no single, overall time complexity here.
- Instead we'll report best and worst case time complexities.


## Best Case Time Complexity

- How does the time taken in the best case grow as the input gets larger?


## Definition

Define $T_{\text {best }}(n)$ to be the least time taken by the algorithm on any input of size $n$.

The asymptotic growth of $T_{\text {best }}(n)$ is the algorithm's best case time complexity.

## Best Case

- In linear_search's best case, $T_{\text {best }}(n)=c$, no matter how large the array is.
- The best case time complexity is $\Theta(1)$.


## Worst Case Time Complexity

- How does the time taken in the worst case grow as the input gets larger?


## Definition

Define $T_{\text {worst }}(n)$ to be the most time taken by the algorithm on any input of size $n$.

The asymptotic growth of $T_{\text {worst }}(n)$ is the algorithm's worst case time complexity.

## Worst Case

- In the worst case, linear_search iterates through the entire array.
- The worst case time complexity is $\Theta(n)$.


## Faux Pas

- Asymptotic time complexity is not a complete measure of efficiency.
- $\theta(n)$ is not always better than $\Theta\left(n^{2}\right)$.

Why?

## Faux Pas

- Why? Asymptotic notation "hides the constants".
- $T_{1}(n)=1,000,000 n=\Theta(n)$
- $T_{2}(n)=0.00001 n^{2}=\Theta\left(n^{2}\right)$
- But $T_{1}(n)$ is worse for all but really large $n$.


## Main Idea

Asymptotic time complexity is not the only way to measure efficiency, and it can be misleading.

Sometimes even a $\Theta\left(2^{n}\right)$ algorithm is better than a $\Theta(n)$ algorithm, if the data size is small.

DSC 190
Lecture 1 | Part 3 Arrays and Linked Lists

## Memory

To access a value, we must know its address.


## Sequences

- How do we store an ordered sequence?
- e.g.: 55, 22, 12, 66, 60
- Array? Linked list?


## Arrays

- Store elements contiguously.
> e.g.: 55, 22, 12, 66, 60

- NumPy arrays are... arrays.


## Allocation

- Memory is shared resource.
- A chunk of memory of fixed size has to be reserved (allocated) for the array.
- The size has to be known beforehand.



## Arrays

- To access an element, we need its address.
- Key: Addresses are easily calculated.
$\downarrow$ For $k$ th element: address of first $+(k \times 64$ bits $)$
- Therefore, arrays support $\Theta(1)$-time access.


## Downsides of Arrays

- Homogeneous; every element must be same size.
- To resize the array, a totally new chunk of memory has to be found; old values copied over ${ }^{1}$.
$\left[\begin{array}{llllllllllllll}4 & 3 & 0 & 5 & 2 & 9 & 1\end{array}\right][$ Chrant $]$ [


## malloc Array Time Complexities

- Retrieve kth element: $\Theta$ (1) (good).
- Append element at end: $\Theta(n)(\text { bad })^{2}$.
- Insert/remove in middle: $\Theta(n)$ (bad).
- Allocation: $\Theta(n)$ if initialized, ${ }^{3}$ else $\Theta(1)$

${ }^{2}$ At least on average. See: realloc<br>${ }^{3}$ On Linux this is done lazily, as can be seen by timing np. zeros

## Aside: np . append

» $>\operatorname{arr}=n p \cdot \operatorname{array}([1,2,3])$
»> np.append(arr, 4) \# takes Theta(n) time!
$\operatorname{array}([1,2,3,4])$

## Aside: np .append

```
results = np.array([])
for i in np.arange(100):
    result = run_simulation()
    results = np.append(results, result)
```

    \(\theta\left(n^{2}\right)\)
    
## Aside: np . append

- This was bad code!
- We allocate/copy a quadratic number of elements:

$$
\underbrace{1}_{\text {1stiter }}+\underbrace{2}_{\text {nnd iter }}+\underbrace{3}_{3 r d}+\ldots+\underbrace{100}_{\text {last iter }}=\frac{100 \times 101}{2}=5050
$$

## Aside: np . append

- Better: pre-allocate.

```
results = np.empty(100)
for i in np.arange(100):
    results[i] = run_simulation()
```

$$
<5,2,7,19
$$

(Doubly) Linked Lists
Scatter elements throughout memory.
For each, store address of next/previous.


## Linked Lists

- Each element has an address.
- Keep track of the address of first/last elements.
- Have to find address of middle elements by looping.


## Linked List Time Complexities

- Retrieve $k$ th element:
- $\Theta(k)$ if you don't know address (bad) ${ }^{4}$
- $\Theta(1)$ if you do
- Append/pop element at start/end: $\Theta(1)$ (good).
- Insert/remove $k$ th element:
- $\Theta(k)$ if you don't know address (bad)
- $\Theta(1)$ if you do
$>$ Allocation not needed! (good)
${ }^{4}$ assumes search starts from beginning



## Tradeoffs

- Arrays are better for numerical algorithms.
- Arrays have good cache performance.
- Linked lists are better for stacks and queues.


## Main Idea

Different data structures optimize for different operations.

## Next time...

- Can we have the best of both?
- I.e., a data structure with the "growability" of linked lists, but the fast access of arrays.


## Next time...

- Can we have the best of both?
- I.e., a data structure with the "growability" of linked lists, but the fast access of arrays.
- Yes, in a sense: the dynamic array.


## Next time...

- Can we have the best of both?
- I.e., a data structure with the "growability" of linked lists, but the fast access of arrays.
- Python's list is a dynamic array.

