DSC 190 - Discussion 06

Problem 1.

Consider the following problem: given an n x n grid of unique numbers and a positive integer k, pick k
numbers from the grid so that the sum of the numbers is maximized. Clearly, the greedy strategy of picking
the k largest numbers is guaranteed to be optimal.

Argue that any optimal solution to this problem must include the largest number in the grid using a proof
by contradiction.

Solution: Let m be the largest number in the grid. Suppose 1 > x5 > ... > x,, is an optimal solution.
and further suppose (for a contradiction) that xz; # m. Then m cannot be any one of xa, 23, ..., T
because z; is larger than all of them. But then replacing x; with m yields a new solution whose total
is larger than z1 + x3 + ... + . Therefore 1, xo, ..., x, is not optimal, which is a contradiction. Thus
m must be in the solution.

Problem 2.

The Fibonacci sequence is a sequence of numbers where the next number is determined by adding the two
previous numbers. The sequence is famous because the ratio of consecutive elements converges to the golden
ratio.

The formal definition of the Fibonacci sequence is recursive:

1 if 1
l‘n:{ if n € {0,1}

Tp—1 + Tp_o otherwise

a) As a warmup, write out the first six elements of the sequence, starting with n =0

Solution: 1,1,2,3,5,8

b) Write a recursive function which takes in n and computes the nth Fibonacci number. How large can
n be before your function starts to take more than a second or so to finish?

Solution:

def fibonacci(n):
""'"Compute the nth Fibonacci number'''
if (n==0) or (n==1):
return 1
return fibonacci(n-1) + fibonacci(n-2)

c) Draw the recursion tree that results from running your function with n = 5. Are there overlapping
subproblems?

d) Your recursive code for computing the Fibonacci sequence is, in a sense, a backtracking algorithm.
Modify it by adding a cache to create a top-down dynamic programming solution for computing the
nth Fibonacci number.



Solution:

def fibonacci_dp(n, cache=None):
if cache is Nonme:
cache = [None]*(n+1)

if (cache[n] is not Nome):
return cache[n]

if (n==0) or (n ==1):
cache[n] =1
return 1

fib_n = fibonacci_dp(n-1, cache) + fibonacci_dp(n-2, cache)
cache[n] = fib_n

return fib_n

e) Create a bottom-up, iterative version of your function.

Solution:

def fibonacci_bottom_up(n):
fib_seq = [None]*(n+1)

fib_seq[0] = 1

if(n >= 1):
fib_seq[1] =1

for i in range(2, n+1):
fib_seq[i] = fib_seqli-1] + fib_seq[i-2]

return fib_seq[n]




