
DSC 190 - Discussion 03

Problem 1.

When performing a search for the k nearest neighbors to a query point, we need to keep track of the k
smallest distances found so far. We can do so using a heap.

Fill in the class below so that it keeps track of the k smallest numbers inserted while maintaining a heap
whose size is never larger than k + 1.

class KSmallest:

def __init__(self, k):
...

def insert(self, number):
"""Insert a number."""
...

def max(self):
"""Return the largest of the k numbers stored."""

def as_list(self):
"""Return the k elements as a list."""
...

Solution:

class KSmallest:

def __init__(self, k):
self.k = k
self.heap = MaxHeap()

def insert(self, key):
if len(self.heap.keys) < self.k or key < self.heap.max():

self.heap.insert(key)

if len(self.heap.keys) > self.k:
self.heap.pop_max()

def as_list(self):
return list(self.heap.keys)

def max(self):
return self.heap.max()

Problem 2.

kNN search requires that we find the k nearest neighbours when we reach a leaf node in our search.

Fill in the brute force search function below to find k nearest neighbours to a point for a given leaf node.

1

def brute_force_knn_search(data, p, k):
"""
Find nearest neighbour
Parameters:
data : np.ndarray

An n X d array of points
p : np.ndarray

A d-array representing the query point
k : int

The number of neighbours to find

Returns:
knn : np.ndarray

The k X d array of form [distance, point]
where point is a d-array and distance is a float value
represent distance to query point p

"""

Solution:

import numpy as np

def brute_force_nn_search(data, p, k):
"""Perform a brute force NN search.

Parameters

data : ndarray

An n x d array of n points in d dimensions.
p : ndarray

A d-array representing a query point.
k : int

The number of nearest neighbors to return. Default: 1

Returns

ndarray

The k nearest neighbors of p as a k-by-d array.
ndarray

The distance to the k nearest neighbor.

"""
all_distances = np.sqrt(np.sum((data - p)**2, axis=1))

if k > len(data):
k = len(data)

which distances are <= k?
closest_ix = np.argpartition(all_distances, k-1)[:k]

extract the k closest points and their distances
k_points = data[closest_ix]
k_distances = all_distances[closest_ix]

2

lastly, we need to sort each
sort_ix = np.argsort(k_distances)
k_distances = k_distances[sort_ix]
k_points = k_points[sort_ix]

return (k_points, k_distances)

3

