DSC 190 - Discussion 02

Problem 1.

In lecture, we saw that inserting an element into an existing heap takes $\Theta(\log n)$ time in the worst case, where n is the number of elements currently in the heap. This means that if we start with an empty heap and insert n elements, the time taken in the worst case is $\Theta(n \log n)$. In this problem, we'll see that we can actually build a heap in $\Theta(n)$ time if we already have all of the elements to be inserted stored in an array.
a) Now suppose we have an array with n elements that we wish to turn into a heap. We will do this by calling ._push_down(i) on each heap node, but in a particular order. We don't need to call it on the leaf nodes, as they are already as low as they can go. Instead, we'll start by calling . push_down(i) on the nodes at height 1 , then nodes at height 2 , and so on, going from right to left.
Implement this strategy in code.

Solution:

```
def parent(ix):
    return (ix - 1)//2
def build_heap(arr):
    n = len(arr)
    heap = MaxHeap(arr)
    # find the index of the rightmost non-leaf node
    # this will be the parent of the last node
    ix = parent(n-1)
    while ix >= 0:
        heap._push_down(ix)
```

b) Show that building a heap in this way takes $\Theta(n)$ time, where n is the length of the array.

Hint: $\sum_{k=0}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}}$
Solution: The cost of a ._push_down is $O(h)$ in the worst case, where h is the height of the node being pushed down.
At first, we push down nodes at height one, where $h=1$. How many such nodes are there? A quick check shows that in a full binary tree, there are exactly $(n+1) / 4$.
Next, we push down nodes at height two, where $h=2$. There are $(n+1) / 8$ such nodes in a full binary tree.
And so forth. To push down a node at height h, it takes work $c h$, but there are $(n+1) / 2^{h+1}$ such nodes.

In total, the work is:

$$
\sum_{k=1}^{h} \frac{n+1}{2^{k+1}} k=\frac{n+1}{2} \sum_{k=1}^{h} \frac{k}{2^{k}}
$$

Using the hint with $x=1 / 2$, we see that:

$$
\sum_{k=1}^{h} \frac{k}{2^{k}} \leq \sum_{k=0}^{\infty} k(1 / 2)^{k}=\frac{(1 / 2)}{(1 / 2)^{2}}=1 / 2
$$

So the sum is $\Theta(1)$. Not forgetting the $(n+1) / 2$ out in front, we're left with $\Theta(n)$.
c) (Extra) Let's check that starting from an empty heap and inserting n elements one by one actually does take $\Theta(n \log n)$ time overall. This is a little trickier than it might seem, since n is changing as we insert elements. The first insert takes time roughly $c \log 1$ (for some constant c), the second takes time $c \log 2$, and so forth, until the last takes time $c \log n$. So the total time is:

$$
c(\log 1+\log 2+\log 3+\ldots+\log n)
$$

Show that this is $\Theta(n \log n)$.
Hint: the upper bound is easier than the lower bound. For the lower bound, try splitting the sum in half and working with just the larger half.

Solution: For the upper bound:

$$
c(\log 1+\log 2+\log 3+\ldots+\log n) \leq c(\log n+\log n+\log n+\ldots+\log n)
$$

Since there are n terms in the sum:

$$
=c n \log n
$$

For the lower bound, we apply the trick of splitting the sum in half, keeping everything from the $n / 2$ term on and throwing out the rest. We can assume that n is even and thus divisible by 2 to allow us to avoid writing a floor or ceiling:

$$
c(\log 1+\log 2+\log 3+\ldots+\log n) \geq c[\log (n / 2)+\log (n / 2+1)+\log (n / 2+2)+\ldots \log n]
$$

To get another lower bound, simply replace every term by the smallest term, $\log (n / 2)$:

$$
\geq c[\log (n / 2)+\log (n / 2)+\log (n / 2)+\ldots \log (n / 2)]
$$

There are $n / 2$ terms remaining, so:

$$
\begin{aligned}
& =c(n / 2) \log (n / 2) \\
& =\Theta(n \log n)
\end{aligned}
$$

Since the sum is bounded below by something which is $\Theta(n \log n)$, the sum is also $\Omega(n \log n)$.

Problem 2.

Describe a simple algorithm which takes in an array of size n and an integer parameter k and returns the k most frequent elements of the array. State the time complexity of your approach.

Example: given $[1,9,2,4,5,2,3,4,1,1,5]$, and $k=3$, return 1, 2, and 5 (in no particular order).

Solution: Create a dict (hash map) of counts. Loop through the array of n elements, incrementing its count by one in the dictionary. Next, insert all of the $O(n)$ elements in the dictionary into a priority queue, where the priority is the count of the element. Pop k elements from the priority queue and return.

This takes $\Theta(n)$ average case time to do the insertions into the hash map, $\Theta(n)$ time to build a heap from an existing collection, and $k \log n$ time to pop k elements from the heap, for a total of $\Theta(n+k \log n)$ (average case) time.

