
DSC 190 - Discussion 02

Problem 1.

In lecture, we saw that inserting an element into an existing heap takes Θ(log n) time in the worst case,
where n is the number of elements currently in the heap. This means that if we start with an empty heap
and insert n elements, the time taken in the worst case is Θ(n log n). In this problem, we’ll see that we can
actually build a heap in Θ(n) time if we already have all of the elements to be inserted stored in an array.

a) Now suppose we have an array with n elements that we wish to turn into a heap. We will do this by
calling ._push_down(i) on each heap node, but in a particular order. We don’t need to call it on the
leaf nodes, as they are already as low as they can go. Instead, we’ll start by calling .push_down(i)
on the nodes at height 1, then nodes at height 2, and so on, going from right to left.

Implement this strategy in code.

Solution:

def parent(ix):
return (ix - 1)//2

def build_heap(arr):
n = len(arr)
heap = MaxHeap(arr)
# find the index of the rightmost non-leaf node
# this will be the parent of the last node
ix = parent(n-1)
while ix >= 0:

heap._push_down(ix)

b) Show that building a heap in this way takes Θ(n) time, where n is the length of the array.

Hint:
∑∞

k=0 kx
k = x

(1−x)2

Solution: The cost of a ._push_down is O(h) in the worst case, where h is the height of the
node being pushed down.

At first, we push down nodes at height one, where h = 1. How many such nodes are there? A
quick check shows that in a full binary tree, there are exactly (n+ 1)/4.

Next, we push down nodes at height two, where h = 2. There are (n+ 1)/8 such nodes in a full
binary tree.

And so forth. To push down a node at height h, it takes work ch, but there are (n + 1)/2h+1

such nodes.

In total, the work is:
h∑

k=1

n+ 1

2k+1
k =

n+ 1

2

h∑
k=1

k

2k

1



Using the hint with x = 1/2, we see that:

h∑
k=1

k

2k
≤

∞∑
k=0

k(1/2)k =
(1/2)

(1/2)2
= 1/2

So the sum is Θ(1). Not forgetting the (n+ 1)/2 out in front, we’re left with Θ(n).

c) (Extra) Let’s check that starting from an empty heap and inserting n elements one by one actually
does take Θ(n log n) time overall. This is a little trickier than it might seem, since n is changing as
we insert elements. The first insert takes time roughly c log 1 (for some constant c), the second takes
time c log 2, and so forth, until the last takes time c log n. So the total time is:

c (log 1 + log 2 + log 3 + . . .+ log n)

Show that this is Θ(n log n).

Hint: the upper bound is easier than the lower bound. For the lower bound, try splitting the sum in
half and working with just the larger half.

Solution: For the upper bound:

c (log 1 + log 2 + log 3 + . . .+ log n) ≤ c (log n+ log n+ log n+ . . .+ log n)

Since there are n terms in the sum:

= cn log n

For the lower bound, we apply the trick of splitting the sum in half, keeping everything from the
n/2 term on and throwing out the rest. We can assume that n is even and thus divisible by 2 to
allow us to avoid writing a floor or ceiling:

c (log 1 + log 2 + log 3 + . . .+ log n) ≥ c [log(n/2) + log(n/2 + 1) + log(n/2 + 2) + . . . log n]

To get another lower bound, simply replace every term by the smallest term, log(n/2):

≥ c [log(n/2) + log(n/2) + log(n/2) + . . . log(n/2)]

There are n/2 terms remaining, so:

= c(n/2) log(n/2)

= Θ(n log n)

Since the sum is bounded below by something which is Θ(n log n), the sum is also Ω(n log n).

Problem 2.

Describe a simple algorithm which takes in an array of size n and an integer parameter k and returns the k
most frequent elements of the array. State the time complexity of your approach.

Example: given [1, 9, 2, 4, 5, 2, 3, 4, 1, 1, 5], and k = 3, return 1, 2, and 5 (in no particular
order).

2



Solution: Create a dict (hash map) of counts. Loop through the array of n elements, incrementing
its count by one in the dictionary. Next, insert all of the O(n) elements in the dictionary into a priority
queue, where the priority is the count of the element. Pop k elements from the priority queue and
return.

This takes Θ(n) average case time to do the insertions into the hash map, Θ(n) time to build a heap
from an existing collection, and k log n time to pop k elements from the heap, for a total of Θ(n+k log n)
(average case) time.

3


