DSC 190 - Discussion 01

Problem 1.

In lecture, we analyzed dynamic arrays which had geometric growth rate. That is, when a resize occurred, the
new size was a constant factor times the old. Now consider a linear growth rate, where the new size is the old
size plus a constant. Show that the amortized time complexity of the append operation is ©(n).

Problem 2.

In each of the problems below state the best case and worst case time complexities of the given piece of code
using asymptotic notation. Note that some algorithms may have the same best case and worst case time
complexities. If the best and worst case complexities are different, identify which inputs result in the best
case and worst case. You do not need to show your work for this problem.

Example Algorithm: linear_search as given in lecture.

Ezample Solution: Best case: ©(1), when the target is the first element of the array. Worst case: ©(n),
when the target is not in the array.

a) def f_1(data):
""" data” is a two-dimenstional array of size n*n
n = len(data)
for i in range(n):

mmnn

for j in range(n):
if datali, j] == 42:
return (i,j)

b) def f_2(data):
"""data” is an array of m numbers
n = len(numbers)
swapped = True
while swapped:
swapped = False
for i in range(l,n):

nmnn

if numbers[i-1] < numbers[i]:
next line swaps elements in Theta (1) time
numbers[i], numbers[i-1] = numbers[i-1], numbers[i]
swapped = True

c) def median(numbers):

nmnn mnmnn

computes the median. ‘numbers” s an array of m numbers
n = len(numbers)
for x in numbers:
less = 0
more = 0O
for y in numbers:
if y <= x:
less += 1
if y >= x:
more += 1
if less >= n/2 and more >= n/2:

d) def

e) def

return x

mode (data) :

"""computes the mode. “data’ is an array of m numbers.

mode = None
largest_frequency = 0
for x in data:

count = 0
for y in data:
if x ==

count += 1
if count > largest_frequency:
largest_frequency = count
mode = x
if count > n/2:
return mode
return mode

index_of _median(numbers) :

"M numbers T 1s an array of size n"""
the median() from part c

m = median(numbers)

the linear_search() from lecture
return linear_search(numbers, m)

nmnn

